Contact and symplectic dga's

Symplectic geometry and topology

08 October 14:00 - 15:00

Tobias Ekholm - Uppsala University

We define Hamiltonian simplex differential graded algebras (DGA) with differentials that deform the high energy symplectic homology differential and wrapped Floer homology differential in the cases of closed and open strings in a Weinstein manifold, respectively. The order m term in the differential is induced by varying natural degree m co-products over an (m−1)-simplex, where the operations near the boundary of the simplex are trivial. We show that the Hamiltonian simplex DGA is quasi-isomorphic to the (non-equivariant) contact homology algebra and to the Legendrian homology algebra of the ideal boundary in the closed and open string cases, respectively.
Tobias Ekholm,
Uppsala University
Yakov Eliashberg
Stanford University
Lenhard Ng
Duke University
Ivan Smith
University of Cambridge


Tobias Ekholm


For practical matters at the Institute, send an e-mail to