Seminar

The distribution of the Estermann function and other quantum modular forms

Number Theory

01 March 17:00 - 18:00

Sandro Bettin - University of Genova

Speakers 
Sandro Bettin (University of Genova) & Sary Drappeau (Aix-Marseille University)

Abstract
For a rational a/q, the Estermann function is defined as the additive twist of the the square of the Riemann zeta-function,

D(s,a/q) = \sum_{n>0} d(n) e^{2\pi i n a/q} n^{-s}.

It satisfies a functional equation which encodes Voronoi's summation formula.

It is natural to ask how the central values D(1/2,a/q) are distributed as the rational a/q varies. In contrast with the case of multiplicative twists of L-functions, D(s,a/q) does not have an Euler product and thus the usual machinery does not apply. However, we are able to employ the fact that D(1/2,a/q) is a quantum modular form (there is a certain relation between the values at a/q and q/a) to show, using dynamical systems methods, that D(1/2,a/q) is asymptotically distributed as a Gaussian random variable.​

Organizers
Pär Kurlberg
KTH Royal Institute of Technology
Lilian Matthiesen
KTH Royal Institute of Technology
Damaris Schindler
Universität Göttingen

Program
Contact

Pär Kurlberg

kurlberg@math.kth.se

Lilian Matthiesen

lilian.matthiesen@math.kth.se

Other
information

For practical matters at the Institute, send an e-mail to administration@mittag-leffler.se