Seminar

A gentle introduction to quantum ergodicity

Fractal Geometry and Dynamics

07 September 15:00 - 15:50

Tuomas Sahlsten - University of Bristol

We will give an introduction to the topic of “quantum ergodicity” and review the history and current challenges of the problem. The quantum ergodicity theorem states that on Riemannian surfaces with an ergodic geodesic flow, most eigenfunctions of the Laplacian equidistribute spatially in the large eigenvalue limit. In this talk, we will present an alternative equidistribution theorem for eigenfunctions where the eigenvalues stay bounded and we take instead sequences of compact hyperbolic surfaces that become large in, say, volume. Thus the result combines quantum ergodicity with the theory of limit multiplicities in spectral theory (after DeGeorge and Wallach). The approach is motivated by the recent works of Anantharaman, Brooks, Le Masson, and Lindenstrauss on eigenvectors of the discrete Laplacian on regular graphs, and the holomorphic form analogues by Nelson, Pitale and Saha. In the dynamics side of the proof we require the exponential mixing structure of the geodesic flow on hyperbolic surfaces, in particular a quantitative mean ergodic theorem by Nevo. This is a joint work with Etienne Le Masson (Bristol).
Organizers
Kenneth J. Falconer
University of St Andrews
Maarit Järvenpää
University of Oulu
Antti Kupiainen
University of Helsinki
Francois Ledrappier
University of Notre Dame
Pertti Mattila
University of Helsinki

Program
Contact

Maarit Järvenpää

maarit.jarvenpaa@oulu.fi

Other
information

For practical matters at the Institute, send an e-mail to secretary@mittag-leffler.se