Seminar

The Liouville Theorem and linear operators satisfying the maximum principle

Geometric Aspects of Nonlinear Partial Differential Equations

06 December 15:00 - 16:00

Felix del Teso - Universidad Autónoma de Madrid

The classical Liouville Theorem states that bounded harmonic functions are constant. The talk will revisit this result for the most general class of linear operators with constant coefficients satisfying the maximum principle (characterized by Courr`ege in [2]). The class includes local and nonlocal and not necessarily symmetric operators among which you can find the fractional Laplacian, Relativistic Schr ̈odinger operators, convolution operators, CGMY, as well as discretizations of them. We give a full characterization of the operators in this class satisfying the Liouville property. When the Liouville property does not hold, we also establish precise periodicity sets of the solutions. The techniques and proofs of [1] combine arguments from PDEs, group the- ory, number theory and numerical analysis (and still, they are simple, short, and very intuitive). References [1] N. Alibaud, F. del Teso, J. Endal, and E. R. Jakobsen. The Liouville theorem and linear operators satisfying the maximum principle. Journal de Math ́ematiques Pures et Appliqu ́ees, 142:229–242, 2020. [2] P. Courr`ege. G ́en ́erateur infinit ́esimal d’un semi-groupe de convolution sur Rn, et formule de L ́evy-Khinchine. Bull. Sci. Math. (2), 88:3–30, 1964. Joint work with N. Alibaud (Laboratorie de Math ́ematiques de Besan ̧con), J. Endal (Universidad Aut ́onoma de Madrid) and E. R. Jakobsen (Norwegian University of Science and Technology).
Organizers
Panagiota Daskalopoulos
Columbia University
Alessio Figalli
ETH Zürich
Erik Lindgren
Uppsala University
Henrik Shahgholian
KTH Royal Institute of Technology
Susanna Terracini,
University of Turin

Program
Contact

Erik Lindgren

erik.lindgren@math.uu.se

Henrik Shahgholian

henriksh@math.kth.se

Other
information

For practical matters at the Institute, send an e-mail to administration@mittag-leffler.se