Seminar

Modular zeros in the character table of the symmetric group

Number Theory

10 March 18:15 - 19:15

Sarah Peluse - Princeton University

In 2017, Miller conjectured, based on computational evidence, that for any fixed prime $p$ the density of entries in the character table of $S_n$ that are divisible by $p$ goes to $1$ as $n$ goes to infinity. I’ll describe a proof of this conjecture, which is joint work with K. Soundararajan. I will also discuss the (still open) problem of determining the asymptotic density of zeros in the character table of $S_n$, where it is not even clear from computational data what one should expect.

Organizers
Pär Kurlberg
KTH Royal Institute of Technology
Lilian Matthiesen
KTH Royal Institute of Technology
Damaris Schindler
Universität Göttingen

Program
Contact

Pär Kurlberg

kurlberg@math.kth.se

Lilian Matthiesen

lilian.matthiesen@math.kth.se

Other
information

For practical matters at the Institute, send an e-mail to administration@mittag-leffler.se