Seminar

Postdoc day, Seminar 3: Abelian cycles in the homology of the Torelli group

Higher algebraic structures in algebra, topology and geometry

25 March 15:45 - 16:15

Erik Lindell - Stockholm University

The mapping class group of a compact and orientable surface of genus g has an important subgroup called the Torelli group, which is the kernel of the action on the homology of the surface. In this talk we will discuss the stable rational homology of the Torelli group of a surface with a boundary component, about which very little is known in general. These homology groups are representations of the arithmetic group Sp_{2g}(Z) and we study them using an Sp_{2g}(Z)-equivariant map induced on homology by the so-called Johnson homomorphism. The image of this map is a finite dimensional and algebraic representation of Sp_{2g}(Z). By considering a type of homology classes called abelian cycles, which are easy to write down for Torelli groups and for which we can derive an explicit formula for the map in question, we may use classical representation theory of symplectic groups to describe a large part of the image.

 

Click here to watch the seminar

Organizers
Gregory Arone
Stockholm University
Tilman Bauer
KTH Royal Institute of Technology
Alexander Berglund
Stockholm University
Søren Galatius
University of Copenhagen
Jesper Grodal,
University of Copenhagen
Thomas Kragh
Uppsala University

Program
Contact

Alexander Berglund

alexb@math.su.se

Søren Galatius

galatius@math.ku.dk

Thomas Kragh

thomas.kragh@math.uu.se

Other
information

For practical matters at the Institute, send an e-mail to administration@mittag-leffler.se