Seminar

Postdoc day, Seminar 4: Local Gorenstein duality in chromatic group cohomology

Higher algebraic structures in algebra, topology and geometry

14 January 15:50 - 16:20

Luca Pol - Universität Regensburg

Many algebraic definitions and constructions can be made in a derived or homotopy invariant setting and as such make sense for ring spectra. Dwyer-Greenlees-Iyengar (followed by Barthel-Heard-Valenzuela) showed that one can make sense of local Gorenstein duality for ring spectra. In this talk, I will show that cochain spectra C*(BG;R) satisfy local Gorenstein duality surprisingly often, and explain some of the implications of this. When R=k is a field this recovers duality properties in modular representation theory conjectured by Benson and later proved by Benson-Greenlees. However, the result also applies to more exotic coefficients R such as Lubin-Tate theories, K-theory spectra or topological modular forms, showing that chromatic analogues of Benson’s conjecture also hold. This is joint work with Jordan Williamson.

 

Click here to watch the seminar

Organizers
Gregory Arone
Stockholm University
Tilman Bauer
KTH Royal Institute of Technology
Alexander Berglund
Stockholm University
Søren Galatius
University of Copenhagen
Jesper Grodal,
University of Copenhagen
Thomas Kragh
Uppsala University

Program
Contact

Alexander Berglund

alexb@math.su.se

Søren Galatius

galatius@math.ku.dk

Thomas Kragh

thomas.kragh@math.uu.se

Other
information

For practical matters at the Institute, send an e-mail to administration@mittag-leffler.se