SL_2-tilings, infinite triangulations, and continuous cluster categories

Representation Theory

09 April 15:30 - 16:30

Peter Jorgensen - Newcastle University

This is report on joint work with Christine Bessenrodt and Thorsten Holm. An SL_2-tiling is an infinite grid of positive integers such that each adjacent 2x2-submatrix has determinant 1. These tilings were introduced by Assem, Reutenauer, and Smith for combinatorial purposes. We will show a bijection between SL_2-tilings and certain infinite triangulations of the circle with four accumulation points. We will see how properties of the tilings are reflected in the triangulations. For instance, the entry 1 of a tiling always gives an arc of the corresponding triangulation, and 1 can occur infinitely often in a tiling. On the other hand, if a tiling has no entry equal to 1, then the minimal entry of the tiling is unique, and the minimal entry can be seen as a more complex pattern in the triangulation. The infinite triangulations also give rise to cluster tilting subcategories in a certain c luster category with infinite clusters related to the continuous cluster categories of Igusa and Todorov. The SL_2-tilings can be viewed as the corresponding cluster characters.
Henning Haahr Andersen
Aarhus University
Aslak Bakke Buan
NTNU - Norwegian University of Science and Technology
Volodymyr Mazorchuk,
Uppsala University


Volodymyr Mazorchuk

Tel: 018-471 3284


For practical matters at the Institute, send an e-mail to