Seminar

Uhlenbeck compactification as a Bridgeland moduli space

Moduli and Algebraic Cycles

23 November 14:30 - 15:30

Tuomas Tajakka - Stockholm University

In recent years, Bridgeland stability conditions have become a central tool in the study of moduli of sheaves and their birational geometry. However, moduli spaces of Bridgeland semistable objects are known to be projective only in a limited number of cases. After reviewing the classical moduli theory of sheaves on curves and surfaces, I will present a new projectivity result for a Bridgeland moduli space on an arbitrary smooth projective surface, as well as discuss how to interpret the Uhlenbeck compactification of the moduli of slope stable vector bundles as a Bridgeland moduli space. The proof is based on studying a determinantal line bundle constructed by Bayer and Macrì. Time permitting, I will mention some work on PT-stability on a 3-fold.

Click here to watch the seminar

Organizers
John Christian Ottem
University of Oslo
Dan Petersen
Stockholm University
David Rydh
KTH Royal Institute of Technology

Program
Contact

Dan Petersen

dan.petersen@math.su.se

Other
information

For practical matters at the Institute, send an e-mail to administration@mittag-leffler.se