Vanishing in motivic stable stems

Algebro-Geometric and Homotopical Methods

23 February 11:00 - 12:00

Kyle M. Ormsby - Reed College

Recent work of Röndigs-Spitzweck-Østvær sharpens the connection between the slice and Novikov spectral sequences. Using classical vanishing lines for the E_2-page of the Adams-Novikov spectral sequence and the work of Andrews-Miller on the eta-periodic ANSS, I will deduce some new vanishing theorems in the bigraded homotopy groups of the eta-complete motivic sphere spectrum. In particular, I will show that the m-th eta-complete Milnor-Witt stem is bounded above (by an explicit piecewise linear function) when m = 1 or 2 (mod 4). This is joint work with Oliver Röndigs and Paul Arne Østvær.
Eric M. Friedlander
The University of Southern California
Lars Hesselholt
University of Copenhagen
Paul Arne Østvaer
University of Oslo


Paul Arne Østvaer


For practical matters at the Institute, send an e-mail to