Virasoro constraints for moduli spaces of sheaves on surfaces

Moduli and Algebraic Cycles

28 October 14:00 - 15:00


Speaker: Dirk van Bree

The Virasoro constraints are a well-known conjecture in GW-theory. Recently, Moreira, Oblomkov, Okounkov and Pandharipande formulated versions for the PT-theory of a 3-fold and the Hilbert scheme of points on a surface. I will introduce a version of this conjecture for the moduli space of stable sheaves on a surface, generalising the Hilbert scheme case. Then I will explain how to verify this conjecture in a few explicit toric cases. This involves a combinatorial description of equivariant sheaves which is originally due to Klyachko.

Click here to watch the seminar

John Christian Ottem
University of Oslo
Dan Petersen
Stockholm University
David Rydh
KTH Royal Institute of Technology


Dan Petersen


For practical matters at the Institute, send an e-mail to