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A physical motivation

Quasicrystals - Ho-Mg-Zn icosahedral quasicrystal

Aperiodic order - Penrose tiling
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Aperiodic minimal subshifts

• For n ∈ N and for a finite collection of symbols A, which we refer to as an alphabet, we
define An to be the set of all finite words of length n, and set

A∗ B
⋃

n∈N0

An ,

where by convention A0 is the set containing the empty word ∅.

• We denote by A∞ the set of all infinite words and equip it with the discrete product
topology.

• The continuous map σ : A∞ → A∞ defined by σ(ω1, ω2, . . . ) B (ω2, ω3, . . . ) is called the
left-shift.

• A closed set Y ⊆ A∞ which is left-shift invariant is called a subshift.

• The languageL(Y) of a subshift Y is the collection of all factors of the elements of Y .

• An element ω of a subshift is called periodic, if there is a finite word v such that vp is a
factor of ω for all p ∈ N.

• A subshift is called aperiodic if it admits no periodic elements.

• A subshift is called minimal if every point has a dense orbit.
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Regularity of subshifts

Definition (Repulsive)
A subshift Y is called repulsive if

inf
{
|W | − |w |
|w |

: w,W ∈ L(Y),w is a prefix and suffix of W , and W , w , ∅
}
> 0.

Definition (Power free)
For a subshift Y and for n ∈ N set

Q(n) B sup
{
p ∈ N : there exists W ∈ L(Y) with |W | = n and Wp ∈ L(Y)

}
We say that a subshift Y is power free if lim supn→∞ Q(n) < ∞.

Definition (Linearly repetitive)
A subshift Y is called linearly repetitive if

lim sup
n→∞

R(n)

n
< ∞,

where the repetitive function R : N→ N of a subshift Y assigns to n the smallest n′ such that
any element of L(Y) with length n′ contains (as factors) all elements of L(Y) with length n.



Aperiodic minimal subshifts l-Grigorchuk subshifts and their complexity References

Regularity of subshifts

Definition (Repulsive)
A subshift Y is called repulsive if

inf
{
|W | − |w |
|w |

: w,W ∈ L(Y),w is a prefix and suffix of W , and W , w , ∅
}
> 0.

Definition (Power free)
For a subshift Y and for n ∈ N set

Q(n) B sup
{
p ∈ N : there exists W ∈ L(Y) with |W | = n and Wp ∈ L(Y)

}
We say that a subshift Y is power free if lim supn→∞ Q(n) < ∞.

Definition (Linearly repetitive)
A subshift Y is called linearly repetitive if

lim sup
n→∞

R(n)

n
< ∞,

where the repetitive function R : N→ N of a subshift Y assigns to n the smallest n′ such that
any element of L(Y) with length n′ contains (as factors) all elements of L(Y) with length n.



Aperiodic minimal subshifts l-Grigorchuk subshifts and their complexity References

Regularity of subshifts

Definition (Repulsive)
A subshift Y is called repulsive if

inf
{
|W | − |w |
|w |

: w,W ∈ L(Y),w is a prefix and suffix of W , and W , w , ∅
}
> 0.

Definition (Power free)
For a subshift Y and for n ∈ N set

Q(n) B sup
{
p ∈ N : there exists W ∈ L(Y) with |W | = n and Wp ∈ L(Y)

}
We say that a subshift Y is power free if lim supn→∞ Q(n) < ∞.

Definition (Linearly repetitive)
A subshift Y is called linearly repetitive if

lim sup
n→∞

R(n)

n
< ∞,

where the repetitive function R : N→ N of a subshift Y assigns to n the smallest n′ such that
any element of L(Y) with length n′ contains (as factors) all elements of L(Y) with length n.



Aperiodic minimal subshifts l-Grigorchuk subshifts and their complexity References

Example: Sturmian subshifts

Sturmian word with irrational slope θ ∈ (0, 1).

x = (1, 1, 0, 1, 1, 0, 1, 0, 1, 1, . . . )

Definition (Sturmian word)
Let θ ∈ [0, 1] be irrational. Define the Sturmian word x B (xn)n∈N of slope θ by

xn B dθ(n + 1)e − dθne.



Aperiodic minimal subshifts l-Grigorchuk subshifts and their complexity References

Example: Sturmian subshifts

Sturmian word with irrational slope θ ∈ (0, 1).

x = (1

, 1, 0, 1, 1, 0, 1, 0, 1, 1, . . .

)

Definition (Sturmian word)
Let θ ∈ [0, 1] be irrational. Define the Sturmian word x B (xn)n∈N of slope θ by

xn B dθ(n + 1)e − dθne.



Aperiodic minimal subshifts l-Grigorchuk subshifts and their complexity References

Example: Sturmian subshifts

Sturmian word with irrational slope θ ∈ (0, 1).

x = (1, 1

, 0, 1, 1, 0, 1, 0, 1, 1, . . .

)

Definition (Sturmian word)
Let θ ∈ [0, 1] be irrational. Define the Sturmian word x B (xn)n∈N of slope θ by

xn B dθ(n + 1)e − dθne.



Aperiodic minimal subshifts l-Grigorchuk subshifts and their complexity References

Example: Sturmian subshifts

Sturmian word with irrational slope θ ∈ (0, 1).

x = (1, 1, 0

, 1, 1, 0, 1, 0, 1, 1, . . .

)

Definition (Sturmian word)
Let θ ∈ [0, 1] be irrational. Define the Sturmian word x B (xn)n∈N of slope θ by

xn B dθ(n + 1)e − dθne.



Aperiodic minimal subshifts l-Grigorchuk subshifts and their complexity References

Example: Sturmian subshifts

Sturmian word with irrational slope θ ∈ (0, 1).

x = (1, 1, 0, 1

, 1, 0, 1, 0, 1, 1, . . .

)

Definition (Sturmian word)
Let θ ∈ [0, 1] be irrational. Define the Sturmian word x B (xn)n∈N of slope θ by

xn B dθ(n + 1)e − dθne.



Aperiodic minimal subshifts l-Grigorchuk subshifts and their complexity References

Example: Sturmian subshifts

Sturmian word with irrational slope θ ∈ (0, 1).

x = (1, 1, 0, 1, 1

, 0, 1, 0, 1, 1, . . .

)

Definition (Sturmian word)
Let θ ∈ [0, 1] be irrational. Define the Sturmian word x B (xn)n∈N of slope θ by

xn B dθ(n + 1)e − dθne.



Aperiodic minimal subshifts l-Grigorchuk subshifts and their complexity References

Example: Sturmian subshifts

Sturmian word with irrational slope θ ∈ (0, 1).

x = (1, 1, 0, 1, 1, 0, 1, 0, 1, 1, . . . )

Definition (Sturmian word)
Let θ ∈ [0, 1] be irrational. Define the Sturmian word x B (xn)n∈N of slope θ by

xn B dθ(n + 1)e − dθne.



Aperiodic minimal subshifts l-Grigorchuk subshifts and their complexity References

Example: Sturmian subshifts

Sturmian word with irrational slope θ ∈ (0, 1).

x = (1, 1, 0, 1, 1, 0, 1, 0, 1, 1, . . . )

Definition (Sturmian word)
Let θ ∈ [0, 1] be irrational. Define the Sturmian word x B (xn)n∈N of slope θ by

xn B dθ(n + 1)e − dθne.



Aperiodic minimal subshifts l-Grigorchuk subshifts and their complexity References

Definition (Sturmian subshift)
Let x B (xn)n∈N denote a Sturmian word of slope θ. The set

X = Ω(x) B {σk (x1, x2, . . . ) : k ∈ N0}

is called the Sturmian subshift of slope θ.

Here the closure is taken with respect to the product topology.

Jacques Charles François Sturm
(29.09.1803–15.12.1855)
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Properties of Sturmian subshifts

• A Sturmian subshift is aperiodic.

• A Sturmian subshift is minimal.

• A Sturmian subshift has a unique right-special word per length.

Theorem ([HM40, FBF+02, KS12])
The following are equivalent.

• The continued fraction entries of θ are bounded.

• A Sturmian subshift X of slope θ is linearly repetitive.

• A Sturmian subshift X of slope θ is repulsive.

• A Sturmian subshift X of slope θ is power free.
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Definition (α-repulsive)
Let α ≥ 1 be given. For a subshift Y set

`α B lim inf
n→∞

Aα,n ,

where for a given natural number n ≥ 2,

Aα,n B inf
{
|W | − |w |
|w |1/α

: w,W ∈ L(X),w is a prefix and suffix of W ,

|W | = n and W , w , ∅
}
.

If `α is finite and non-zero, then we say that Y is α-repulsive.
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Definition (α-finite)
Recall:

Q(n) B sup
{
p ∈ N : there exists W ∈ L(Y) with |W | = n and Wp ∈ L(Y)

}
.

For α ≥ 1 we say that a subshift is α-finite if the value

lim sup
n→∞

Q(n)

nα−1

is finite and non-zero.
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Definition (α-repetitive)
Recall: The repetitive function R : N→ N of a subshift Y assigns to r the smallest r ′ such that
any element of L(Y) with length r ′ contains (as factors) all elements of L(Y) with length r .
Let α ≥ 1 be given and set

Rα B lim sup
n→∞

R(n)

nα
.

A subshift Y is called α-repetitive if Rα is finite and non-zero, where R denotes the repetitive
function of Y .
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These results also holds for subshifts, which are not Sturmian.

Proposition ([GKM+16])

1-repulsive implies repulsive.

1-finite implies power free.

1-repetitive implies linearly repetitive.

Theorem ([DKM+17])
A subshift that is α-repulsive or α-finite is aperiodic.

Theorem ([DKM+17])
A subshift is α-repulsive if and only if it is α-finite.

How about α-repetitive and α-repulsive, are they equivalent?

. . . Later.
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l-Grigorchuk subshift

• Let κ be a semi-group homomorphism on a four letter alphabet {a, x, y, z} given by

κ(a) B (a, x, a), κ(x) B y, κ(y) B z, κ(z) B x.

• Lysenok showed that Grigorchuk’s group G has the following presentation.

〈a, x, y, z : 1 = a2 = x2 = y2 = z2 = κk ((az)4) = κk ((axayay)4) for all k ∈ N0〉

• It is known that there exists a unique η ∈ {a, x, y, z}∞ such that κ(η) = η.

• The subshift Ω(η) B {σk (η) : k ∈ N0} is referred to as the Grigorchuk subshift.

• Alternatively, this subshift can be generated by the three semi-group homomorphisms τβ,
where β ∈ {x, y, z} is defined by

τβ(a) B (a, β, a), τβ(x) B x, τβ(y) B y, τβ(z) B z.

• The word η is the unique infinite word such that, for all n ∈ N, η has the prefix

(τx ◦ τy ◦ τz)n(a) = τx ◦ τy ◦ τz︸        ︷︷        ︸ ◦ τx ◦ τy ◦ τz︸        ︷︷        ︸ ◦ · · · ◦ τx ◦ τy ◦ τz︸        ︷︷        ︸︸                                                     ︷︷                                                     ︸
n−times

(a).
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where β ∈ {x, y, z} is defined by

τβ(a) B (a, β, a), τβ(x) B x, τβ(y) B y, τβ(z) B z.

• The word η is the unique infinite word such that, for all n ∈ N, η has the prefix

(τx ◦ τy ◦ τz)n(a) = τx ◦ τy ◦ τz︸        ︷︷        ︸ ◦ τx ◦ τy ◦ τz︸        ︷︷        ︸ ◦ · · · ◦ τx ◦ τy ◦ τz︸        ︷︷        ︸︸                                                     ︷︷                                                     ︸
n−times

(a).
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Generating the sequence

First 15 letters

κ3(a) = τx ◦ τy ◦ τz(a) = (a, x, a, y, a, x, a, z, a, x, a, y, a, x, a).

One can show that the η is the word obtained from the following procedure.

(a a a a a a a a a a a a a a a a a a a a a a a a a a a . . . )

(a x a a x a a x a a x a a x a a x a a x a a x a a x a a x a a x a a x a a x a a x . . . )

(a x a y a x a a x a y a x a a x a y a x a a x a y a x a a x a y a x a a x a y a x a a x a y a x . . . )

(a x a y a x a z a x a y a x a a x a y a x a z a x a y a x a a x a y a x a z a x a y a x a a x a y a x . . . )

(a x a y a x a z a x a y a x a x a x a y a x a z a x a y a x a a x a y a x a z a x a y a x a x a x a y a x . . . )

(a x a y a x a z a x a y a x a x a x a y a x a z a x a y a x a y a x a y a x a z a x a y a x a x a x a y a x . . . )

What happens if we fill in the same letter multiple times in a row?
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We now introduce a more general class of subshifts based on this latter construction, which
we call l-Grigorchuk subshifts, where each l = (lk )k∈N is a sequence of natural numbers.

For j ∈ N, define τ(j) by

τ(j)(a) B


τ

l1
x ◦ τ

l2
y ◦ τ

l3
z ◦ · · · ◦ τ

lj
z(a) if j ≡ 0 (mod 3),

τ
l1
x ◦ τ

l2
y ◦ τ

l3
z ◦ · · · ◦ τ

lj
x (a) if j ≡ 1 (mod 3),

τ
l1
x ◦ τ

l2
y ◦ τ

l3
z ◦ · · · ◦ τ

lj
y (a) if j ≡ 2 (mod 3),

Proposition ([DKM+17])
For l = (lk )k∈N, there exists a unique ηl ∈ {a, x, y, z}∞ with prefix τ(j)(a), for all j ∈ N0.
Moreover,

Ω(η) B {σk (η1, η2, . . . ) : k ∈ N0}

is an aperiodic minimal subshift.
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What can be deduced from the sequence l about the subshift?

Theorem ([DKM+17])
For α ≥ 1 an l-Grigorchuk subshift is α-repulsive, and hence α-finite if and only if

lim sup
n→∞

∣∣∣∣∣∣∣ln+1 + (1 − α)
n∑

i=1

li

∣∣∣∣∣∣∣ < ∞.
Theorem ([DKM+17])
For α ≥ 1 an l-Grigorchuk subshift is α-repetitive if and only if

lim sup
n→∞

∣∣∣∣∣∣∣ln+2 + ln+1 + (1 − α)
n∑

i=1

li

∣∣∣∣∣∣∣ < ∞.
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Example ([DKM+17])

• If l is a bounded sequence, then the associated l-Grigorchuk subshift is 1-repetitive and
1-repulsive, and hence, 1-finite.

• Let b ≥ 2 denote a fixed integer. If l = (bn)n∈N, then the associated l-Grigorchuk subshift
is b-repulsive, and hence b-finite, and b2-repetitive.

• Let (bn)n∈N denote a bounded sequence, and set ln = 2n/2 − bn/2 if n is even, and set
ln = b(n+1)/2 otherwise. The associated l-Grigorchuk subshift is 2-repetitive, however, it is
not α-repulsive nor α-finite, for any value of α ≥ 1.

• If l = (ln)n∈N is a sequence of natural number such that there exists a non-constant
polynomial P with ln = P(n), then the l-Grigorchuk subshift is neither α-repulsive, α-finite
nor α-repetitive, for any value of α ≥ 1.
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The second example actually holds in general.

Proposition ([DKM+17])
Let l be a sequence of natural numbers. If the l-Grigorchuk subshift is α-repulsive, and hence
α-finite, then it is α2-repetitive.

Proof
We set c B lim supn→∞ |ln+1 + (1 − α)

∑n
i=1 li |, which is a finite real number. For all ε > 0,

there exists an N ∈ N, such that, for all n ≥ N,

α −
c + ε∑n

i=1 li
≤ 1 +

ln+1∑n
i=1 li

≤ α +
c + ε∑n

i=1 li
,

Observe that, for all δ ≥ 1 and n ∈ N,

ln+2 + (1 − δ)
n+1∑
i=1

li = ln+2 + ln+1 +

(
1 − δ

(
1 +

ln+1∑n
i=1 li

)) n∑
i=1

li .
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Hence applying the previous inequalites gives∣∣∣∣∣∣∣ln+2 + ln+1 + (1 − δα)
n∑

i=1

li

∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣∣δ(c + ε) + ln+2 + (1 − δ)

n+1∑
i=1

li

∣∣∣∣∣∣∣ ,
for all n ≥ N. As δ→ α, the result follows.

Recall
For β ≥ 1 an l-Grigorchuk subshift is β-repetitive if and only if

lim sup
n→∞

∣∣∣∣∣∣∣ln+2 + ln+1 + (1 − β)
n∑

i=1

li

∣∣∣∣∣∣∣ < ∞.
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