Regularity of aperiodic sequences and their associated subshifts

Mosbach, Arne

Universität Bremen

29.09.2017

Joint work with F. Dreher, M Gröger, M. Kesseböhmer, M. Steffens and T. Samuel. Based on 'Regularity of aperiodic minimal subshifts' by T. Samuel.

Work partially supported by the DFG sponsored grant

Sturmain subshifts

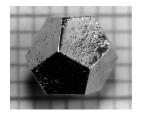
- [KS12] J. Kellendonk and J. Savinien.
 Spectral triples and characterization of aperiodic order.
 Proc. Lond. Math. Soc. (1) 104 (2012), 123–157.
- [GKM+16] M. Gröger, M. Keßeböhmer, A. Mosbach, T. Samuel and M. Steffens.
 A classification of aperiodic order via spectral metrics and Jarník sets.
 Submitted (2016) 25 pages Pre-print: arxiv.org/abs/1601.06435.

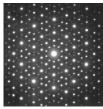
/-Grigorchuk subshift

- [GLN17] R. Grigorchuk, D. Lenz and T. Nagnibeda.
 Spectra of Schreier graphs of Grigorchuk's group and Schroedinger operators with aperiodic order.
 To appear in: Math. Ann. (2017) 29 pages.
- [DKM+17] F. Dreher, M. Keßeböhmer, A. Mosbach, T. Samuel and M. Steffens. Regularity of aperiodic minimal subshifts.
 Bull. Math. Sci. (2017) 1–22.

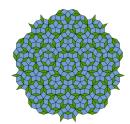
A physical motivation

Quasicrystals - Ho-Mg-Zn icosahedral quasicrystal





Aperiodic order - Penrose tiling



• For $n \in \mathbb{N}$ and for a finite collection of symbols \mathcal{A} , which we refer to as an alphabet, we define \mathcal{A}^n to be the set of all finite words of length n, and set

$$\mathcal{A}^* \coloneqq \bigcup_{n \in \mathbb{N}_0} \mathcal{A}^n,$$

For n∈ N and for a finite collection of symbols A, which we refer to as an alphabet, we
define Aⁿ to be the set of all finite words of length n, and set

$$\mathcal{A}^* := \bigcup_{n \in \mathbb{N}_0} \mathcal{A}^n,$$

where by convention \mathcal{A}^0 is the set containing the empty word \emptyset .

• We denote by \mathcal{A}^{∞} the set of all infinite words and equip it with the discrete product topology.

For n∈ N and for a finite collection of symbols A, which we refer to as an alphabet, we
define Aⁿ to be the set of all finite words of length n, and set

$$\mathcal{A}^* := \bigcup_{n \in \mathbb{N}_0} \mathcal{A}^n,$$

- We denote by A[∞] the set of all infinite words and equip it with the discrete product topology.
- The continuous map $\sigma \colon \mathcal{A}^{\infty} \to \mathcal{A}^{\infty}$ defined by $\sigma(\omega_1, \omega_2, \dots) := (\omega_2, \omega_3, \dots)$ is called the left-shift.

For n∈ N and for a finite collection of symbols A, which we refer to as an alphabet, we
define Aⁿ to be the set of all finite words of length n, and set

$$\mathcal{A}^* := \bigcup_{n \in \mathbb{N}_0} \mathcal{A}^n,$$

- We denote by A[∞] the set of all infinite words and equip it with the discrete product topology.
- The continuous map $\sigma \colon \mathcal{A}^{\infty} \to \mathcal{A}^{\infty}$ defined by $\sigma(\omega_1, \omega_2, \dots) := (\omega_2, \omega_3, \dots)$ is called the left-shift.
- A closed set $Y \subseteq \mathcal{A}^{\infty}$ which is left-shift invariant is called a subshift.

For n∈ N and for a finite collection of symbols A, which we refer to as an alphabet, we
define Aⁿ to be the set of all finite words of length n, and set

$$\mathcal{A}^* := \bigcup_{n \in \mathbb{N}_0} \mathcal{A}^n,$$

- We denote by A[∞] the set of all infinite words and equip it with the discrete product topology.
- The continuous map $\sigma \colon \mathcal{A}^{\infty} \to \mathcal{A}^{\infty}$ defined by $\sigma(\omega_1, \omega_2, \dots) := (\omega_2, \omega_3, \dots)$ is called the left-shift.
- A closed set $Y \subseteq \mathcal{A}^{\infty}$ which is left-shift invariant is called a subshift.
- The language $\mathcal{L}(Y)$ of a subshift Y is the collection of all factors of the elements of Y.

For n∈ N and for a finite collection of symbols A, which we refer to as an alphabet, we
define Aⁿ to be the set of all finite words of length n, and set

$$\mathcal{A}^* := \bigcup_{n \in \mathbb{N}_0} \mathcal{A}^n,$$

- We denote by A[∞] the set of all infinite words and equip it with the discrete product topology.
- The continuous map $\sigma \colon \mathcal{A}^{\infty} \to \mathcal{A}^{\infty}$ defined by $\sigma(\omega_1, \omega_2, \dots) := (\omega_2, \omega_3, \dots)$ is called the left-shift.
- A closed set $Y \subseteq \mathcal{A}^{\infty}$ which is left-shift invariant is called a subshift.
- The language $\mathcal{L}(Y)$ of a subshift Y is the collection of all factors of the elements of Y.
- An element ω of a subshift is called periodic, if there is a finite word v such that v^p is a
 factor of ω for all p ∈ N.

For n∈ N and for a finite collection of symbols A, which we refer to as an alphabet, we
define Aⁿ to be the set of all finite words of length n, and set

$$\mathcal{A}^* := \bigcup_{n \in \mathbb{N}_0} \mathcal{A}^n,$$

- We denote by A[∞] the set of all infinite words and equip it with the discrete product topology.
- The continuous map $\sigma \colon \mathcal{A}^{\infty} \to \mathcal{A}^{\infty}$ defined by $\sigma(\omega_1, \omega_2, \dots) := (\omega_2, \omega_3, \dots)$ is called the left-shift.
- A closed set $Y \subseteq \mathcal{A}^{\infty}$ which is left-shift invariant is called a subshift.
- The language $\mathcal{L}(Y)$ of a subshift Y is the collection of all factors of the elements of Y.
- An element ω of a subshift is called periodic, if there is a finite word v such that v^p is a
 factor of ω for all p ∈ N.
- A subshift is called aperiodic if it admits no periodic elements.

For n∈ N and for a finite collection of symbols A, which we refer to as an alphabet, we
define Aⁿ to be the set of all finite words of length n, and set

$$\mathcal{A}^* := \bigcup_{n \in \mathbb{N}_0} \mathcal{A}^n,$$

- We denote by \mathcal{A}^∞ the set of all infinite words and equip it with the discrete product topology.
- The continuous map $\sigma \colon \mathcal{A}^{\infty} \to \mathcal{A}^{\infty}$ defined by $\sigma(\omega_1, \omega_2, \dots) := (\omega_2, \omega_3, \dots)$ is called the left-shift.
- A closed set $Y \subseteq \mathcal{A}^{\infty}$ which is left-shift invariant is called a subshift.
- The language $\mathcal{L}(Y)$ of a subshift Y is the collection of all factors of the elements of Y.
- An element ω of a subshift is called periodic, if there is a finite word v such that v^p is a
 factor of ω for all p ∈ N.
- A subshift is called aperiodic if it admits no periodic elements.
- A subshift is called minimal if every point has a dense orbit.

Regularity of subshifts

Definition (Repulsive)

A subshift Y is called repulsive if

$$\inf \left\{ \frac{|W| - |w|}{|w|} : w, W \in \mathcal{L}(Y), w \text{ is a prefix and suffix of } W, \text{ and } W \neq w \neq \emptyset \right\} > 0.$$

Regularity of subshifts

Definition (Repulsive)

A subshift Y is called repulsive if

$$\inf\left\{\frac{|W|-|w|}{|w|}: w,W\in\mathcal{L}(Y),w \text{ is a prefix and suffix of } W, \text{ and } W\neq w\neq\emptyset\right\}>0.$$

Definition (Power free)

For a subshift Y and for $n \in \mathbb{N}$ set

$$Q(n) := \sup \{ p \in \mathbb{N} : \text{ there exists } W \in \mathcal{L}(Y) \text{ with } |W| = n \text{ and } W^p \in \mathcal{L}(Y) \}$$

We say that a subshift Y is power free if $\limsup_{n\to\infty} Q(n) < \infty$.

Regularity of subshifts

Definition (Repulsive)

A subshift Y is called repulsive if

$$\inf\left\{\frac{|W|-|w|}{|w|}: w,W\in\mathcal{L}(Y),w \text{ is a prefix and suffix of } W, \text{ and } W\neq w\neq\emptyset\right\}>0.$$

Definition (Power free)

For a subshift Y and for $n \in \mathbb{N}$ set

$$Q(n) := \sup \{ p \in \mathbb{N} : \text{ there exists } W \in \mathcal{L}(Y) \text{ with } |W| = n \text{ and } W^p \in \mathcal{L}(Y) \}$$

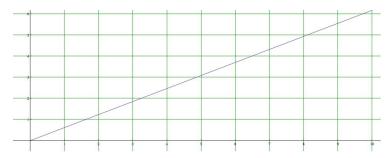
We say that a subshift Y is power free if $\limsup_{n\to\infty} Q(n) < \infty$.

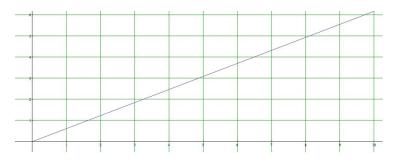
Definition (Linearly repetitive)

A subshift Y is called linearly repetitive if

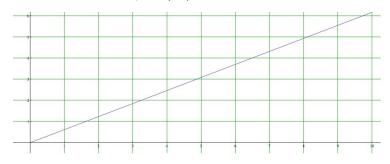
$$\limsup_{n\to\infty}\frac{R(n)}{n}<\infty,$$

where the repetitive function $R: \mathbb{N} \to \mathbb{N}$ of a subshift Y assigns to n the smallest n' such that any element of $\mathcal{L}(Y)$ with length n' contains (as factors) all elements of $\mathcal{L}(Y)$ with length n.

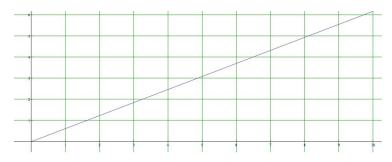




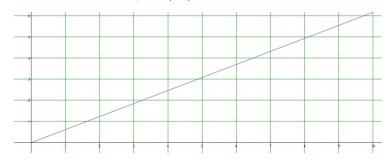
$$x = (1)$$



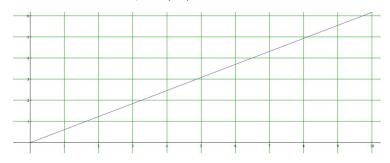
$$x = (1, 1)$$



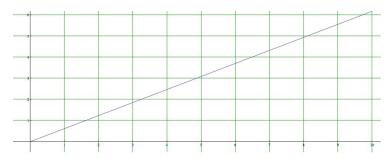
$$x = (1, 1, 0)$$



$$x = (1, 1, 0, 1)$$

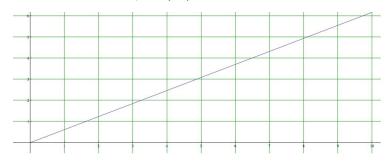


$$x = (1, 1, 0, 1, 1)$$



$$x = (1, 1, 0, 1, 1, 0, 1, 0, 1, 1, \dots)$$

Sturmian word with irrational slope $\theta \in (0, 1)$.



$$x = (1, 1, 0, 1, 1, 0, 1, 0, 1, 1, \dots)$$

Definition (Sturmian word)

Let $\theta \in [0, 1]$ be irrational. Define the Sturmian word $x := (x_n)_{n \in \mathbb{N}}$ of slope θ by

$$x_n := \lceil \theta(n+1) \rceil - \lceil \theta n \rceil.$$

Definition (Sturmian subshift)

Let $x := (x_n)_{n \in \mathbb{N}}$ denote a Sturmian word of slope θ . The set

$$X = \Omega(x) := \overline{\{\sigma^k(x_1, x_2, \dots) \colon k \in \mathbb{N}_0\}}$$

is called the Sturmian subshift of slope θ .

Here the closure is taken with respect to the product topology.

Jacques Charles François Sturm (29.09.1803–15.12.1855)

Definition (Sturmian subshift)

Let $x := (x_n)_{n \in \mathbb{N}}$ denote a Sturmian word of slope θ . The set

$$X = \Omega(x) := \overline{\{\sigma^k(x_1, x_2, \dots) \colon k \in \mathbb{N}_0\}}$$

is called the Sturmian subshift of slope θ .

Here the closure is taken with respect to the product topology.

Jacques Charles François Sturm (29.09.1803–15.12.1855)

Properties of Sturmian subshifts

- · A Sturmian subshift is aperiodic.
- · A Sturmian subshift is minimal.
- A Sturmian subshift has a unique right-special word per length.

Properties of Sturmian subshifts

- A Sturmian subshift is aperiodic.
- · A Sturmian subshift is minimal.
- A Sturmian subshift has a unique right-special word per length.

Theorem ([HM40, FBF+02, KS12])

The following are equivalent.

- The continued fraction entries of θ are bounded.
- A Sturmian subshift X of slope θ is linearly repetitive.
- A Sturmian subshift X of slope θ is repulsive.
- A Sturmian subshift X of slope θ is power free.

Definition (α -repulsive)

Let $\alpha \ge 1$ be given. For a subshift Y set

$$\ell_{\alpha} := \liminf_{n \to \infty} A_{\alpha,n},$$

where for a given natural number $n \ge 2$,

$$A_{\alpha,n} := \inf \left\{ \frac{|W| - |w|}{|w|^{1/\alpha}} : w, W \in \mathcal{L}(X), w \text{ is a prefix and suffix of } W, \right.$$

$$|W| = n \text{ and } W \neq w \neq \emptyset$$
.

If ℓ_{α} is finite and non-zero, then we say that Y is α -repulsive.

Definition (α -finite)

Recall:

$$Q(n) := \sup\{p \in \mathbb{N} : \text{ there exists } W \in \mathcal{L}(Y) \text{ with } |W| = n \text{ and } W^p \in \mathcal{L}(Y)\}.$$

For $\alpha \geq 1$ we say that a subshift is α -finite if the value

$$\limsup_{n\to\infty}\frac{Q(n)}{n^{\alpha-1}}$$

is finite and non-zero.

Definition (α -repetitive)

Recall: The repetitive function $R: \mathbb{N} \to \mathbb{N}$ of a subshift Y assigns to r the smallest r' such that any element of $\mathcal{L}(Y)$ with length r' contains (as factors) all elements of $\mathcal{L}(Y)$ with length r.

Let $\alpha \ge 1$ be given and set

$$R_{\alpha} := \limsup_{n \to \infty} \frac{R(n)}{n^{\alpha}}.$$

A subshift Y is called α -repetitive if R_{α} is finite and non-zero, where R denotes the repetitive function of Y.

These results also holds for subshifts, which are not Sturmian.

Proposition ([GKM⁺16])

- 1-repulsive implies repulsive.
- 1-finite implies power free.
- 1-repetitive implies linearly repetitive.

Theorem ([DKM+17])

A subshift that is α -repulsive or α -finite is aperiodic.

Theorem ([DKM+17])

A subshift is α -repulsive if and only if it is α -finite.

These results also holds for subshifts, which are not Sturmian.

Proposition ([GKM⁺16])

- 1-repulsive implies repulsive.
- 1-finite implies power free.
- 1-repetitive implies linearly repetitive.

Theorem ([DKM+17])

A subshift that is α -repulsive or α -finite is aperiodic.

Theorem ([DKM+17])

A subshift is α -repulsive if and only if it is α -finite.

How about α -repetitive and α -repulsive, are they equivalent?

These results also holds for subshifts, which are not Sturmian.

Proposition ([GKM⁺16])

- 1-repulsive implies repulsive.
- 1-finite implies power free.
- 1-repetitive implies linearly repetitive.

Theorem ([DKM+17])

A subshift that is α -repulsive or α -finite is aperiodic.

Theorem ([DKM+17])

A subshift is α -repulsive if and only if it is α -finite.

How about α -repetitive and α -repulsive, are they equivalent?

...Later.

• Let κ be a semi-group homomorphism on a four letter alphabet $\{a, x, y, z\}$ given by

$$\kappa(a) \coloneqq (a,x,a), \quad \kappa(x) \coloneqq y, \quad \kappa(y) \coloneqq z, \quad \kappa(z) \coloneqq x.$$

• Let κ be a semi-group homomorphism on a four letter alphabet $\{a, x, y, z\}$ given by

$$\kappa(a) \coloneqq (a, x, a), \quad \kappa(x) \coloneqq y, \quad \kappa(y) \coloneqq z, \quad \kappa(z) \coloneqq x.$$

• Lysenok showed that Grigorchuk's group G has the following presentation.

$$\langle a,x,y,z\colon 1=a^2=x^2=y^2=z^2=\kappa^k((az)^4)=\kappa^k((axayay)^4) \text{ for all } k\in\mathbb{N}_0\rangle$$

• Let κ be a semi-group homomorphism on a four letter alphabet $\{a, x, y, z\}$ given by

$$\kappa(a) \coloneqq (a,x,a), \quad \kappa(x) \coloneqq y, \quad \kappa(y) \coloneqq z, \quad \kappa(z) \coloneqq x.$$

• Lysenok showed that Grigorchuk's group G has the following presentation.

$$(a, x, y, z \colon 1 = a^2 = x^2 = y^2 = z^2 = \kappa^k((az)^4) = \kappa^k((axayay)^4)$$
 for all $k \in \mathbb{N}_0$

• It is known that there exists a unique $\eta \in \{a, x, y, z\}^{\infty}$ such that $\kappa(\eta) = \eta$.

• Let κ be a semi-group homomorphism on a four letter alphabet $\{a, x, y, z\}$ given by

$$\kappa(a) \coloneqq (a,x,a), \quad \kappa(x) \coloneqq y, \quad \kappa(y) \coloneqq z, \quad \kappa(z) \coloneqq x.$$

Lysenok showed that Grigorchuk's group G has the following presentation.

$$(a, x, y, z: 1 = a^2 = x^2 = y^2 = z^2 = \kappa^k((az)^4) = \kappa^k((axayay)^4)$$
 for all $k \in \mathbb{N}_0$

- It is known that there exists a unique $\eta \in \{a, x, y, z\}^{\infty}$ such that $\kappa(\eta) = \eta$.
- The subshift $\Omega(\eta) := \overline{\{\sigma^k(\eta) : k \in \mathbb{N}_0\}}$ is referred to as the Grigorchuk subshift.

I-Grigorchuk subshift

• Let κ be a semi-group homomorphism on a four letter alphabet $\{a, x, y, z\}$ given by

$$\kappa(a) \coloneqq (a, x, a), \quad \kappa(x) \coloneqq y, \quad \kappa(y) \coloneqq z, \quad \kappa(z) \coloneqq x.$$

Lysenok showed that Grigorchuk's group G has the following presentation.

$$(a, x, y, z: 1 = a^2 = x^2 = y^2 = z^2 = \kappa^k((az)^4) = \kappa^k((axayay)^4)$$
 for all $k \in \mathbb{N}_0$

- It is known that there exists a unique $\eta \in \{a, x, y, z\}^{\infty}$ such that $\kappa(\eta) = \eta$.
- The subshift $\Omega(\eta) := \{\sigma^k(\eta) : k \in \mathbb{N}_0\}$ is referred to as the Grigorchuk subshift.
- Alternatively, this subshift can be generated by the three semi-group homomorphisms τ_{β} , where $\beta \in \{x,y,z\}$ is defined by

$$\tau_{\beta}(a) := (a, \beta, a), \quad \tau_{\beta}(x) := x, \quad \tau_{\beta}(y) := y, \quad \tau_{\beta}(z) := z.$$

I-Grigorchuk subshift

• Let κ be a semi-group homomorphism on a four letter alphabet $\{a, x, y, z\}$ given by

$$\kappa(a) := (a, x, a), \quad \kappa(x) := y, \quad \kappa(y) := z, \quad \kappa(z) := x.$$

Lysenok showed that Grigorchuk's group G has the following presentation.

$$(a, x, y, z: 1 = a^2 = x^2 = y^2 = z^2 = \kappa^k((az)^4) = \kappa^k((axayay)^4)$$
 for all $k \in \mathbb{N}_0$

- It is known that there exists a unique $\eta \in \{a, x, y, z\}^{\infty}$ such that $\kappa(\eta) = \eta$.
- The subshift $\Omega(\eta) \coloneqq \{\sigma^k(\eta) \colon k \in \mathbb{N}_0\}$ is referred to as the Grigorchuk subshift.
- Alternatively, this subshift can be generated by the three semi-group homomorphisms τ_{β} , where $\beta \in \{x,y,z\}$ is defined by

$$\tau_{\beta}(a) := (a, \beta, a), \quad \tau_{\beta}(x) := x, \quad \tau_{\beta}(y) := y, \quad \tau_{\beta}(z) := z.$$

• The word η is the unique infinite word such that, for all $n \in \mathbb{N}$, η has the prefix

$$(\tau_x \circ \tau_y \circ \tau_z)^n(a) = \underbrace{\tau_x \circ \tau_y \circ \tau_z}_{\substack{n-\text{times}}} \circ \underbrace{\tau_x \circ \tau_y \circ \tau_z}_{\substack{n-\text{times}}} \circ \underbrace{\tau_x \circ \tau_y \circ \tau_z}_{\substack{n-\text{times}}} (a).$$

First 15 letters

$$\kappa^3(a) = \tau_{x} \circ \tau_{y} \circ \tau_{z}(a) = (a, x, a, y, a, x, a, z, a, x, a, y, a, x, a).$$

First 15 letters

$$\kappa^{3}(a) = \tau_{x} \circ \tau_{y} \circ \tau_{z}(a) = (a, x, a, y, a, x, a, z, a, x, a, y, a, x, a).$$

First 15 letters

$$\kappa^{3}(a) = \tau_{x} \circ \tau_{y} \circ \tau_{z}(a) = (a, x, a, y, a, x, a, z, a, x, a, y, a, x, a).$$

First 15 letters

$$\kappa^3(a) = \tau_X \circ \tau_Y \circ \tau_Z(a) = (a, x, a, y, a, x, a, z, a, x, a, y, a, x, a).$$

First 15 letters

$$\kappa^3(a) = \tau_{\mathsf{X}} \circ \tau_{\mathsf{Y}} \circ \tau_{\mathsf{Z}}(a) = (a, \mathsf{X}, a, \mathsf{Y}, a, \mathsf{X}, a, \mathsf{Z}, a, \mathsf{X}, a, \mathsf{Y}, a, \mathsf{X}, a).$$

First 15 letters

$$\kappa^3(a) = \tau_{\mathsf{X}} \circ \tau_{\mathsf{y}} \circ \tau_{\mathsf{z}}(a) = (a, \mathsf{X}, a, \mathsf{y}, a, \mathsf{X}, a, \mathsf{z}, a, \mathsf{X}, a, \mathsf{y}, a, \mathsf{X}, a).$$

First 15 letters

$$\kappa^3(a) = \tau_{\mathsf{X}} \circ \tau_{\mathsf{y}} \circ \tau_{\mathsf{z}}(a) = (a, \mathsf{X}, a, \mathsf{y}, a, \mathsf{X}, a, \mathsf{z}, a, \mathsf{X}, a, \mathsf{y}, a, \mathsf{X}, a).$$

One can show that the η is the word obtained from the following procedure.

What happens if we fill in the same letter multiple times in a row?

We now introduce a more general class of subshifts based on this latter construction, which we call *I*-Grigorchuk subshifts, where each $I = (I_k)_{k \in \mathbb{N}}$ is a sequence of natural numbers.

We now introduce a more general class of subshifts based on this latter construction, which we call *I*-Grigorchuk subshifts, where each $I = (I_k)_{k \in \mathbb{N}}$ is a sequence of natural numbers. For $i \in \mathbb{N}$, define $\tau^{(j)}$ by

$$\tau^{(j)}(a) := \begin{cases} \tau_x^{l_1} \circ \tau_y^{l_2} \circ \tau_z^{l_3} \circ \cdots \circ \tau_z^{l_j}(a) & \text{if } j \equiv 0 \pmod{3}, \\ \tau_x^{l_1} \circ \tau_y^{l_2} \circ \tau_z^{l_3} \circ \cdots \circ \tau_x^{l_j}(a) & \text{if } j \equiv 1 \pmod{3}, \\ \tau_x^{l_1} \circ \tau_y^{l_2} \circ \tau_z^{l_3} \circ \cdots \circ \tau_y^{l_j}(a) & \text{if } j \equiv 2 \pmod{3}, \end{cases}$$

We now introduce a more general class of subshifts based on this latter construction, which we call *I*-Grigorchuk subshifts, where each $I = (I_k)_{k \in \mathbb{N}}$ is a sequence of natural numbers. For $j \in \mathbb{N}$, define $\tau^{(j)}$ by

$$\tau^{(j)}(a) := \begin{cases} \tau_x^{l_1} \circ \tau_y^{l_2} \circ \tau_z^{l_3} \circ \cdots \circ \tau_x^{l_j}(a) & \text{if } j \equiv 0 \pmod{3}, \\ \tau_x^{l_1} \circ \tau_y^{l_2} \circ \tau_z^{l_3} \circ \cdots \circ \tau_x^{l_j}(a) & \text{if } j \equiv 1 \pmod{3}, \\ \tau_x^{l_1} \circ \tau_y^{l_2} \circ \tau_x^{l_3} \circ \cdots \circ \tau_y^{l_j}(a) & \text{if } j \equiv 2 \pmod{3}, \end{cases}$$

Proposition ([DKM+17])

For $I=(I_k)_{k\in\mathbb{N}}$, there exists a unique $\eta_I\in\{a,x,y,z\}^\infty$ with prefix $\tau^{(j)}(a)$, for all $j\in\mathbb{N}_0$. Moreover.

$$\Omega(\eta) \coloneqq \overline{\{\sigma^k(\eta_1,\eta_2,\dots) \colon k \in \mathbb{N}_0\}}$$

is an aperiodic minimal subshift.

What can be deduced from the sequence I about the subshift?

What can be deduced from the sequence I about the subshift?

Theorem ([DKM+17])

For $\alpha \geq 1$ an I-Grigorchuk subshift is α -repulsive, and hence α -finite if and only if

$$\limsup_{n\to\infty}\left|I_{n+1}+(1-\alpha)\sum_{i=1}^nI_i\right|<\infty.$$

What can be deduced from the sequence I about the subshift?

Theorem ([DKM+17])

For $\alpha \geq 1$ an I-Grigorchuk subshift is α -repulsive, and hence α -finite if and only if

$$\limsup_{n\to\infty}\left|I_{n+1}+(1-\alpha)\sum_{i=1}^nI_i\right|<\infty.$$

Theorem ([DKM+17])

For $\alpha \geq 1$ an I-Grigorchuk subshift is α -repetitive if and only if

$$\limsup_{n\to\infty}\left|I_{n+2}+I_{n+1}+(1-\alpha)\sum_{i=1}^nI_i\right|<\infty.$$

• If I is a bounded sequence, then the associated I-Grigorchuk subshift is 1-repetitive and 1-repulsive, and hence, 1-finite.

- If I is a bounded sequence, then the associated I-Grigorchuk subshift is 1-repetitive and 1-repulsive, and hence, 1-finite.
- Let $b \ge 2$ denote a fixed integer. If $I = (b^n)_{n \in \mathbb{N}}$, then the associated *I*-Grigorchuk subshift is b-repulsive, and hence b-finite, and b^2 -repetitive.

- If I is a bounded sequence, then the associated I-Grigorchuk subshift is 1-repetitive and 1-repulsive, and hence, 1-finite.
- Let $b \ge 2$ denote a fixed integer. If $I = (b^n)_{n \in \mathbb{N}}$, then the associated *I*-Grigorchuk subshift is b-repulsive, and hence b-finite, and b^2 -repetitive.
- Let $(b_n)_{n\in\mathbb{N}}$ denote a bounded sequence, and set $I_n=2^{n/2}-b_{n/2}$ if n is even, and set $I_n = b_{(n+1)/2}$ otherwise. The associated *I*-Grigorchuk subshift is 2-repetitive, however, it is not α -repulsive nor α -finite, for any value of $\alpha \geq 1$.

- If I is a bounded sequence, then the associated I-Grigorchuk subshift is 1-repetitive and 1-repulsive, and hence, 1-finite.
- Let $b \ge 2$ denote a fixed integer. If $I = (b^n)_{n \in \mathbb{N}}$, then the associated *I*-Grigorchuk subshift is b-repulsive, and hence b-finite, and b^2 -repetitive.
- Let $(b_n)_{n\in\mathbb{N}}$ denote a bounded sequence, and set $I_n=2^{n/2}-b_{n/2}$ if n is even, and set $I_n = b_{(n+1)/2}$ otherwise. The associated *I*-Grigorchuk subshift is 2-repetitive, however, it is not α -repulsive nor α -finite, for any value of $\alpha \geq 1$.
- If $I = (I_n)_{n \in \mathbb{N}}$ is a sequence of natural number such that there exists a non-constant polynomial P with $I_n = P(n)$, then the I-Grigorchuk subshift is neither α -repulsive, α -finite nor α -repetitive, for any value of $\alpha \geq 1$.

The second example actually holds in general.

Proposition ([DKM+17])

Let I be a sequence of natural numbers. If the I-Grigorchuk subshift is α -repulsive, and hence α -finite, then it is α^2 -repetitive.

Proof

We set $c:=\limsup_{n\to\infty}|I_{n+1}+(1-\alpha)\sum_{i=1}^nI_i|$, which is a finite real number. For all $\epsilon>0$, there exists an $N\in\mathbb{N}$, such that, for all $n\geq N$,

$$\alpha - \frac{c + \epsilon}{\sum_{i=1}^{n} I_i} \le 1 + \frac{I_{n+1}}{\sum_{i=1}^{n} I_i} \le \alpha + \frac{c + \epsilon}{\sum_{i=1}^{n} I_i},$$

Observe that, for all $\delta \geq 1$ and $n \in \mathbb{N}$,

$$I_{n+2} + (1-\delta) \sum_{i=1}^{n+1} I_i = I_{n+2} + I_{n+1} + \left(1 - \delta \left(1 + \frac{I_{n+1}}{\sum_{i=1}^n I_i}\right)\right) \sum_{i=1}^n I_i.$$

Hence applying the previous inequalites gives

$$\left| I_{n+2} + I_{n+1} + (1 - \delta \alpha) \sum_{i=1}^{n} I_i \right| \leq \left| \delta(c + \epsilon) + I_{n+2} + (1 - \delta) \sum_{i=1}^{n+1} I_i \right|,$$

for all $n \ge N$. As $\delta \to \alpha$, the result follows.

Recall

For $\beta \geq 1$ an *I*-Grigorchuk subshift is β -repetitive if and only if

$$\limsup_{n\to\infty}\left|I_{n+2}+I_{n+1}+(1-\beta)\sum_{i=1}^nI_i\right|<\infty.$$

References

- [AR91] P. Arnoux and G. Rauzy, Représentation géométrique de suites de complexité 2n + 1, Bull. Soc. Math. France **119** (1991), no. 2, 199–215.
- [Bug08] Y. Bugeaud, Sets of exact approximation order by rational numbers II, Unif. Distrib. Theory 3 (2008), no. 2, 9–20.
- [DKM+17] F. Dreher, M. Keßeböhmer, A. Mosbach, T. Samuel, and M. Steffens, Regularity of aperiodic minimal subshifts, Bull. Math. Sci. (2017), 1–22.
- [FBF+02] N. P. Fogg, V. Berthé, S. Ferenczi, C. Mauduit, and A. Siegel (eds)., Substitutions in dynamics, arithmetics and combinatorics, vol. 1794, Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2002.
- [GKM+16] M. Gröger, M. Keßeböhmer, A. Mosbach, T. Samuel, and M. Steffens, A classification of aperiodic order via spectral metrics and jarník sets, Submitted (2016), 26 pages.
- [GLN17] R. Grigorchuk, D. Lenz, and T. Nagnibeda, Spectra of schreier graphs of grigorchuk's group and schroedinger operators with aperiodic order, To appear in: Math. Ann. (2017), 29 pages.
- [HM40] G. A. Hedlund and M. Morse, Symbolic dynamics ii: Sturmian trajectories, Amer. J. Math. 62 (1940), 1–42.
- [Jar31] V. Jarník, Über die simultanen diophantischen approximationen, Math. Z. 33 (1931), 505–543.
- [KS12] J. Kellendonk and J. Savinien, Spectral triples and characterization of aperiodic order, Proc. Lond. Math. Soc. 104 (2012), no. 1, 123–157.

Thank you for your attention.