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Aperiodic minimal subshifts

e For n e N and for a finite collection of symbols A, which we refer to as an alphabet, we
define A" to be the set of all finite words of length n, and set

A" = U A"

neNp

where by convention A° is the set containing the empty word 0.
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For n € N and for a finite collection of symbols A, which we refer to as an alphabet, we
define A" to be the set of all finite words of length n, and set

A" = U A"
neNp

where by convention A° is the set containing the empty word 0.

We denote by A* the set of all infinite words and equip it with the discrete product
topology.

The continuous map o: A* — A* defined by o-(w1, wy, ...) = (w2, ws,...) is called the
left-shift.

A closed set Y € A* which is left-shift invariant is called a subshift.
The language £L(Y) of a subshift Y is the collection of all factors of the elements of Y.

An element w of a subshift is called periodic, if there is a finite word v such that vP is a
factor of w for all p € N.

A subshift is called aperiodic if it admits no periodic elements.
A subshift is called minimal if every point has a dense orbit.
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Regularity of subshifts

Definition (Repulsive)
A subshift Y is called repulsive if
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Regularity of subshifts

Definition (Repulsive)
A subshift Y is called repulsive if

inf{w :w, We L(Y),wis a prefix and suffix of W, and W # w # (7)} > 0.

Definition (Power free)

For a subshift Y and for n € N set
Q(n) = sup{p € N: there exists W € L(Y) with |W| = nand WP € L(Y)}
We say that a subshift Y is power free if lim sup,_,., Q(n) < .

Definition (Linearly repetitive)
A subshift Y is called linearly repetitive if
R(n)

limsup —= < oo,
P n

n—oo

where the repetitive function R: N — N of a subshift Y assigns to n the smallest n’ such that
any element of £(Y) with length n’ contains (as factors) all elements of £(Y) with length n.
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Example: Sturmian subshifts

Sturmian word with irrational slope 6 € (0, 1).
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Sturmian word with irrational slope 6 € (0, 1).
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Sturmian word with irrational slope 6 € (0, 1).

x=(1,1,0,1 )
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Sturmian word with irrational slope 6 € (0, 1).

x=(1,1,0,1,1,0,1,0,1,1,...)



Aperiodic minimal subshifts I-Grigorchuk subshifts and their complexity

Example: Sturmian subshifts

Sturmian word with irrational slope 6 € (0, 1).

x=(1,1,0,1,1,0,1,0,1,1,...)

Definition (Sturmian word)
Let 6 € [0, 1] be irrational. Define the Sturmian word x := (xp)nen Of slope 6 by

Xn =[6(n+ 1)1 -[6n].

References
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Definition (Sturmian subshift)
Let X := (Xn)newr denote a Sturmian word of slope 6. The set

X = Q(x) = {ok(x1,x2,...): k € No}
is called the Sturmian subshift of slope 6.

Here the closure is taken with respect to the product topology.

Jacques Charles Frangois Sturm
(29.09.1803-15.12.1855)
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Properties of Sturmian subshifts

e A Sturmian subshift is aperiodic.
e A Sturmian subshift is minimal.
o A Sturmian subshift has a unique right-special word per length.
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Properties of Sturmian subshifts

o A Sturmian subshift is aperiodic.
o A Sturmian subshift is minimal.
o A Sturmian subshift has a unique right-special word per length.

Theorem ([HM40, FBF 02, KS12))

The following are equivalent.

e The continued fraction entries of 8 are bounded.

o A Sturmian subshift X of slope 6 is linearly repetitive.
o A Sturmian subshift X of slope 6 is repulsive.

e A Sturmian subshift X of slope 6 is power free.
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Definition (a-repulsive)
Let @ > 1 be given. For a subshift Y set

Cy = 1liminf Ay p,
n—oo

where for a given natural number n > 2,

Ao = inf {lvl\/ll% s w, W e L(X),wis a prefix and suffix of W,
w

|W| = nand W;tw;t(l)}.

If ¢, is finite and non-zero, then we say that Y is a-repulsive.
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Definition (a-finite)

Recall:

Q(n) =sup{p € N: there exists W € L(Y) with |W| = nand WP € L(Y)}.

For @ > 1 we say that a subshift is a-finite if the value

Q(n)

na-1

limsup

n—oo

is finite and non-zero.

References
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Definition (a-repetitive)
Recall: The repetitive function R: N — N of a subshift Y assigns to r the smallest r’ such that
any element of £(Y) with length r’ contains (as factors) all elements of £(Y) with length r.

Let @ > 1 be given and set

R(n)

o

R = limsup

n—oo

A subshift Y is called a-repetitive if R, is finite and non-zero, where R denotes the repetitive
function of Y.
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These results also holds for subshifts, which are not Sturmian.
Proposition ((GKM™16])

1-repulsive implies repulsive.

1-finite implies power free.

1-repetitive implies linearly repetitive.

Theorem ([DKM™17])
A subshift that is a-repulsive or a-finite is aperiodic.

Theorem ([DKM*17])
A subshift is a-repulsive if and only if it is a-finite.
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How about a-repetitive and a-repulsive, are they equivalent?
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These results also holds for subshifts, which are not Sturmian.
Proposition ((GKM™16])

1-repulsive implies repulsive.
1-finite implies power free.
1-repetitive implies linearly repetitive.

Theorem ([DKM™17])
A subshift that is a-repulsive or a-finite is aperiodic.

Theorem ([DKM*17])
A subshift is a-repulsive if and only if it is a-finite.

How about a-repetitive and a-repulsive, are they equivalent?

...Later.



Aperiodic minimal subshifts I-Grigorchuk subshifts and their complexity References

[-Grigorchuk subshift

o Let k be a semi-group homomorphism on a four letter alphabet {a, x, y, z} given by

k(a) = (a,x,a), «(x)=y, «(y)=2z «(z):=x.
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[-Grigorchuk subshift

Let x be a semi-group homomorphism on a four letter alphabet {a, x, y, z} given by
k(a) = (a,x,a), «(x)=y, «(y)=2z «(z):=x.
Lysenok showed that Grigorchuk’s group G has the following presentation.
(@, x,y,z: 1=a% = x2 = y? = 22 = k((az)*) = «*((axayay)*) for all k € Np)

It is known that there exists a unique n € {a, x, y, z}** such that k() = 7.

The subshift Q(n7) := {o(n): k € No} is referred to as the Grigorchuk subshift.

Alternatively, this subshift can be generated by the three semi-group homomorphisms 7,
where g € {x, y, z} is defined by

(a) =(a.p.a)., 7p(x):=x. 7(y) =y, 1(2) =z
The word 7 is the unique infinite word such that, for all n € N, ; has the prefix

(txotyo1z)"(@) =Tx0Ty0T,0Tx 0Ty 0T 0+ 0Ty 0Ty 0 T4(a).
- - - N S

n—-times
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Generating the sequence

First 15 letters

(@) =140ty 01,(a) = (a,x,a,y,a,%,8,2,a,X,a,Y,a,X,a).
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Generating the sequence

First 15 letters
Ba) =140 Ty 071z(a) =(a,x,a,y,a,x,a,z,a,x,a,y,a,x,a).
One can show that the 7 is the word obtained from the following procedure.

aaaaaaaaaaaaaaaaaaaaaaaaaaa...)
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Generating the sequence

First 15 letters
Ba) =140 Ty 071z(a) =(a,x,a,y,a,x,a,z,a,x,a,y,a,x,a).
One can show that the 7 is the word obtained from the following procedure.
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Generating the sequence

First 15 letters

K3(a) =140T1,07,(a) =(a,x,a,y,a,x,a,z,a,x,a,y,a, X, a).
One can show that the 7 is the word obtained from the following procedure.

(a_a_a_a a a a_ a a a a a a a_a a a a_a a a_a_a_a_a_a_a_...
(axa_axa_axa_axa_axa_axa_axa_axa_axa_axa_axa_axa_axa_ax...
(axayaxa_axayaxa_axayaxa_axayaxa_axayaxa_axayaxa_axayax...
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Generating the sequence

First 15 letters
(@) =140ty 01,(a) = (a,x,a,y,a,%,8,2,a,X,a,Y,a,X,a).

One can show that the 7 is the word obtained from the following procedure.

(a_a_a_a a a a_ a a a a a a a_a a a a_a a a_a_a_a_a_a_a_...
(axa_axa_axa_axa_axa_axa_axa_axa_axa_axa_axa_axa_axa_ax...
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(axayaxazaxayaxaxaxayaxazaxayaxa_axayaxazaxayaxaxaxayax...
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What happens if we fill in the same letter multiple times in a row?

— — — — — ~—
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We now introduce a more general class of subshifts based on this latter construction, which
we call I-Grigorchuk subshifts, where each | = (Ik)ken is a sequence of natural numbers.

For j € N, define () by

i orlzor?o---org(a) ifj=0 (mod 3),

0 (a) = Tgorifor’go-uor?((a) if j=1 (mod 3),

TQ orifo‘rlzao-uoTij;(a) iijQ (mod 3),

Proposition ((DKM*17))

For I = (Ix)ken, there exists a unique n; € {a, x, y, z}* with prefix T(f)(a), for all j € Np.

Moreover,

Q(n) = {o*(m1.72....): k € Ng}

is an aperiodic minimal subshift.
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What can be deduced from the sequence | about the subshift?

Theorem ([DKM™17))

For a > 1 an I-Grigorchuk subshift is a-repulsive, and hence a-finite if and only if

< 0.

n
e+ (1-a) >

limsup
n—oo i=
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What can be deduced from the sequence | about the subshift?

Theorem ([DKM™17))

For a > 1 an I-Grigorchuk subshift is a-repulsive, and hence a-finite if and only if

< 0.

n
e+ (1-a) >

i=1

limsup
n—oo

Theorem ([DKM*17])
Fora > 1 an I-Grigorchuk subshift is a-repetitive if and only if

n
i+ It + (1=0) Yl

lim sup
n—oo I:1

< 00,
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Example ([DKM*17])

o If I'is a bounded sequence, then the associated /-Grigorchuk subshift is 1-repetitive and
1-repulsive, and hence, 1-finite.
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e Let b > 2 denote a fixed integer. If | = (b™)peay, then the associated I-Grigorchuk subshift
is b-repulsive, and hence b-finite, and b?-repetitive.
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e Let (bp)nay denote a bounded sequence, and set I, = 2"2 — by, if n is even, and set
In = b(n11),2 otherwise. The associated /-Grigorchuk subshift is 2-repetitive, however, it is
not a-repulsive nor a-finite, for any value of @ > 1.
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e Let b > 2 denote a fixed integer. If | = (b™)peay, then the associated I-Grigorchuk subshift
is b-repulsive, and hence b-finite, and b?-repetitive.

e Let (bp)nay denote a bounded sequence, and set I, = 2"2 — by, if n is even, and set
In = b(n11),2 otherwise. The associated /-Grigorchuk subshift is 2-repetitive, however, it is
not a-repulsive nor a-finite, for any value of @ > 1.

o If I = (In)new is @ sequence of natural number such that there exists a non-constant
polynomial P with I, = P(n), then the |-Grigorchuk subshift is neither a-repulsive, a-finite
nor a-repetitive, for any value of @ > 1.
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The second example actually holds in general.

Proposition ([DKM*17])

Let I be a sequence of natural numbers. If the I-Grigorchuk subshift is a-repulsive, and hence
a-finite, then it is o®-repetitive.

Proof
We set ¢ = limsup,_ellnt1 + (1 — @) ,f’:] Iil, which is a finite real number. For all € > 0,
there exists an N € N, such that, for all n > N,

c [/ c
a-— n+€51+ ZM <a n+€l’

it img =11

Observe that, forall6 > 1 and n € N,

n+1 n
[/
ln+2+(1—5)Z/i:/n+2+ln+1+(1—6(1+ N ))Zh-
= =

n A
i=1 =1 I’
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Hence applying the previous inequalites gives

<

n
/n+2 + /n+1 + (1 - 5(1)2 I;

i=1

n+1
5(c +€) + 2 + (1 —5)2/:' ,
i=

foralln > N. As § — a, the result follows.

Recall
For 8 > 1 an [-Grigorchuk subshift is g-repetitive if and only if

limsup (lny2 + Iyt + (1 =B) D hf < oo.

n
n—.oo 1

I
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