On complete monotonicity of inverse powers of some stable polynomials

Khazhgali Kozhasov (TU Braunschweig)
joint work with Mateusz Michalek and Bernd Sturmfels

Institut Mittag-Leffler

16 - 20 March 2020
Outline

• Motivation: discrete wave equation
• Complete monotonicity (CM)
• Determinantal polynomials
• Quadratic forms
• Elementary symmetric polynomials
• Integral representation of CM functions
• Products of linear forms
IN THIS TALK

• Motivation: discrete wave equation
• Complete monotonicity (CM)
• Determinantal polynomials
• Quadratic forms
• Elementary symmetric polynomials
• Integral representation of CM functions
• Products of linear forms
IN THIS TALK

- Motivation: discrete wave equation
IN THIS TALK

- Motivation: discrete wave equation
- Complete monotonicity (CM)
IN THIS TALK

- Motivation: discrete wave equation
- Complete monotonicity (CM)
- Determinantal polynomials
IN THIS TALK

• Motivation: discrete wave equation
• Complete monotonicity (CM)
• Determinantal polynomials
• Quadratic forms
IN THIS TALK

- Motivation: discrete wave equation
- Complete monotonicity (CM)
- Determinantal polynomials
- Quadratic forms
- Elementary symmetric polynomials
IN THIS TALK

• Motivation: discrete wave equation
• Complete monotonicity (CM)
• Determinantal polynomials
• Quadratic forms
• Elementary symmetric polynomials
• Integral representation of CM functions
IN THIS TALK

• Motivation: discrete wave equation
• Complete monotonicity (CM)
• Determinantal polynomials
• Quadratic forms
• Elementary symmetric polynomials
• Integral representation of CM functions
• Products of linear forms
IN THIS TALK

• Motivation: discrete wave equation
• Complete monotonicity (CM)
• Determinantal polynomials
• Quadratic forms
• Elementary symmetric polynomials
• Integral representation of CM functions
• Products of linear forms
Motivation

In 1920's K. Friedrichs and H. Lewy were studying discretized wave equation in 2D:

$$(\Delta_k \Delta_\ell + \Delta_k \Delta_m + \Delta_\ell \Delta_m) a_k,\ell,m = 0,$$

where $\Delta_j a_j = a_j - a_{j-1}$.

They observed that Taylor coefficients a_k,ℓ,m of the function $$(1-x)(1-y) + (1-x)(1-z) + (1-y)(1-z) = \sum_{k,\ell,m \geq 0} a_k,\ell,m x^k y^\ell z^m$$
Motivation

In 1920's K. Friedrichs and H. Lewy were studying discretized wave equation in 2D.
In 1920’s K. Friedrichs and H. Lewy were studying discretized wave equation in 2D

\[(\Delta_k \Delta_\ell + \Delta_k \Delta_m + \Delta_\ell \Delta_m) a_{k,\ell,m} = 0, \quad \Delta_j a_j = a_j - a_{j-1}.\]
Motivation

In 1920's K. Friedrichs and H. Lewy were studying discretized wave equation in 2D

$$(\Delta_k \Delta_\ell + \Delta_k \Delta_m + \Delta_\ell \Delta_m) a_{k,\ell,m} = 0, \quad \Delta_j a_j = a_j - a_{j-1}.$$

They observed that Taylor coefficients $a_{k,\ell,m}$ of the function

$$\frac{1}{(1-x)(1-y) + (1-x)(1-z) + (1-y)(1-z)} = \sum_{k,\ell,m \geq 0} a_{k,\ell,m} x^k y^\ell z^m$$
Motivation

In 1920's K. Friedrichs and H. Lewy were studying discretized wave equation in 2D

\[(\Delta_k \Delta_\ell + \Delta_k \Delta_m + \Delta_\ell \Delta_m) a_{k,\ell,m} = 0, \quad \Delta_j a_j = a_j - a_{j-1}.\]

They observed that Taylor coefficients \(a_{k,\ell,m}\) of the function

\[
\frac{1}{(1 - x)(1 - y) + (1 - x)(1 - z) + (1 - y)(1 - z)} = \sum_{k,\ell,m \geq 0} a_{k,\ell,m} x^k y^\ell z^m
\]

satisfy the difference equation \((\ast)\).
Motivation

\[
\frac{1}{(1-x)(1-y) + (1-x)(1-z) + (1-y)(1-z)} = \sum_{k,\ell,m \geq 0} a_{k,\ell,m} x^k y^\ell z^m
\]

Friedrichs and Lewy computed several coefficients \(a_{k,\ell,m} \) and
Friedrichs and Lewy computed several coefficients $a_{k,\ell,m}$ and these turned out to be positive ($a_{k,\ell,m} > 0$).
Motivation

\[
\frac{1}{(1-x)(1-y) + (1-x)(1-z) + (1-y)(1-z)} = \sum_{k,\ell,m \geq 0} a_{k,\ell,m} x^k y^\ell z^m
\]

Friedrichs and Lewy computed several coefficients \(a_{k,\ell,m}\) and these turned out to be positive \((a_{k,\ell,m} > 0)\).

They wanted to exploit positivity of \(a_{k,\ell,m}\) for proving convergence of this (discrete) solution to a (continuous) solution \(a\) of the wave equation (written in different coordinates)

\[
(\partial_x \partial_y + \partial_x \partial_z + \partial_y \partial_z)a = 0.
\]
Motivation

\[
\frac{1}{(1-x)(1-y) + (1-x)(1-z) + (1-y)(1-z)} = \sum_{k,\ell,m \geq 0} a_{k,\ell,m} x^k y^\ell z^m
\]

Friedrichs and Lewy computed several coefficients \(a_{k,\ell,m}\) and these turned out to be positive \((a_{k,\ell,m} > 0)\).

They wanted to exploit positivity of \(a_{k,\ell,m}\) for proving convergence of this (discrete) solution to a (continuous) solution \(a\) of the wave equation (written in different coordinates)

\[
(\partial_x \partial_y + \partial_x \partial_z + \partial_y \partial_z)a = 0.
\]

In 1930 Lewy wrote to G. Szegö asking him to prove positivity of Taylor coefficients \((a_{k,\ell,m} > 0)\) in general.
Szegö’s solution

Shortly after (1932) Szegö proved

\[\sum_{n}^{\infty} \prod_{j \neq i} \left(1 - x_i \right) = \sum_{k_1, \ldots, k_n \geq 0} a_{k_1, \ldots, k_n} x_1^{k_1} \ldots x_n^{k_n}. \]

For \(n = 3 \) this answers Lewy’s question.

Szegö also proved that for any \(\alpha \geq 1/2 \) the function

\[\sum_{n}^{\infty} \prod_{j \neq i} \left(1 - x_i \right)^{\alpha} = \sum_{k_1, \ldots, k_n \geq 0} a_{k_1, \ldots, k_n}^{(\alpha)} x_1^{k_1} \ldots x_n^{k_n} \]

has nonnegative Taylor coefficients \(a_{k_1, \ldots, k_n}^{(\alpha)} \). He expresses coefficients as some integrals of products of Bessel functions which are shown to be positive (nonnegative).
Szegö’s solution

Shortly after (1932) Szegö proved for any n positivity of Taylor coefficients

For $n = 3$ this answers Lewy’s question.

Szegö also proved that for any $\alpha \geq 1/2$ the function

\[
\sum_{k_1, \ldots, k_n \geq 0} a_{k_1, \ldots, k_n} x_{k_1} \ldots x_{k_n}^{\alpha} = \sum_{k_1, \ldots, k_n \geq 0} a_{k_1, \ldots, k_n} x_{k_1} \ldots x_{k_n}
\]

has nonnegative Taylor coefficients a_{k_1, \ldots, k_n}. He expresses coefficients as some integrals of products of Bessel functions which are shown to be positive (nonnegative).
Szegö’s solution

Shortly after (1932) Szegö proved for any n positivity of Taylor coefficients for

$$\frac{1}{\sum_{i=1}^{n} \prod_{j\neq i}(1 - x_{i})} = \sum_{k_{1},\ldots,k_{n} \geq 0} a_{k_{1},\ldots,k_{n}} x_{1}^{k_{1}} \cdots x_{n}^{k_{n}}.$$
Szegö’s solution

Shortly after (1932) Szegö proved for any \(n \) positivity of Taylor coefficients for

\[
\frac{1}{\sum_{i=1}^{n} \prod_{j \neq i} (1 - x_i)} = \sum_{k_1,\ldots,k_n \geq 0} a_{k_1,\ldots,k_n} x_1^{k_1} \cdots x_n^{k_n}.
\]

For \(n = 3 \) this answers Lewy’s question.
Szegö’s solution

Shortly after (1932) Szegö proved for any \(n \) positivity of Taylor coefficients for

\[
\frac{1}{\sum_{i=1}^{n} \prod_{j \neq i} (1 - x_i)} = \sum_{k_1, \ldots, k_n \geq 0} a_{k_1, \ldots, k_n} x_1^{k_1} \cdots x_n^{k_n}.
\]

For \(n = 3 \) this answers Lewy’s question.

Szegö also proved
Szegö’s solution

Shortly after (1932) Szegö proved for any n positivity of Taylor coefficients for

$$\sum^n_{i=1} \prod_{j \neq i} (1 - x_i) = \sum_{k_1, \ldots, k_n \geq 0} a_{k_1, \ldots, k_n} x_1^{k_1} \cdots x_n^{k_n}.$$

For $n = 3$ this answers Lewy’s question.

Szegö also proved that for any $\alpha \geq 1/2$
Szegö’s solution

Shortly after (1932) Szegö proved for any \(n \) positivity of Taylor coefficients for

\[
\frac{1}{\sum_{i=1}^{n} \prod_{j \neq i} (1 - x_i)} = \sum_{k_1, \ldots, k_n \geq 0} a_{k_1, \ldots, k_n} x_1^{k_1} \cdots x_n^{k_n}.
\]

For \(n = 3 \) this answers Lewy’s question.

Szegö also proved that for any \(\alpha \geq 1/2 \) the function

\[
\frac{1}{\left[\sum_{i=1}^{n} \prod_{j \neq i} (1 - x_i) \right]^\alpha} = \sum_{k_1, \ldots, k_n \geq 0} a_{k_1, \ldots, k_n}^{(\alpha)} x_1^{k_1} \cdots x_n^{k_n}
\]

has nonnegative Taylor coefficients \(a_{k_1, \ldots, k_n}^{(\alpha)} \geq 0 \).
Szegö’s solution

Shortly after (1932) Szegö proved for any n positivity of Taylor coefficients for

$$\sum_{i=1}^{n} \prod_{j \neq i} (1 - x_i) = \sum_{k_1, \ldots, k_n \geq 0} a_{k_1, \ldots, k_n} x_1^{k_1} \cdots x_n^{k_n}.$$

For $n = 3$ this answers Lewy’s question.

Szegö also proved that for any $\alpha \geq 1/2$ the function

$$\frac{1}{\left[\sum_{i=1}^{n} \prod_{j \neq i} (1 - x_i) \right]^\alpha} = \sum_{k_1, \ldots, k_n \geq 0} a^{(\alpha)}_{k_1, \ldots, k_n} x_1^{k_1} \cdots x_n^{k_n}$$

has nonnegative Taylor coefficients $a^{(\alpha)}_{k_1, \ldots, k_n} \geq 0$.

He expresses coefficients as some integrals of products of Bessel functions which are shown to be positive (nonnegative).
A new insight from Scott and Sokal

The spanning-tree polynomial of a connected graph $G = (E, V)$ is

$$T_G(x) = \sum T \prod_{e \in T} x^e,$$

where the sum is over all spanning trees of G.

Theorem (Scott and Sokal, 2014)

Let $G = (V, E)$ be a series-parallel graph. Then for any $\alpha \geq 1/2$ and any positive vector $x \in \mathbb{R}^E^+$, the function

$$y \mapsto T_G(x - y) - \alpha$$

has nonnegative Taylor coefficients.

If G is the n-cycle, $T_G(x) = \sum_{i=1}^{n} \prod_{j \neq i} x^j$ and Szegő's result follows from Scott and Sokal's theorem with $x = (1, \ldots, 1)$.
A new insight from Scott and Sokal

The spanning-tree polynomial of a connected graph $G = (E, V)$ is

$$T_G(x) = \sum_{T} \prod_{e \in T} x_e, \quad x \in \mathbb{R}^E,$$

Theorem (Scott and Sokal, 2014)

Let $G = (V, E)$ be a series-parallel graph. Then for any $\alpha \geq 1/2$ and any positive vector $x \in \mathbb{R}^E > 0$, the function $y \mapsto T_G(x - y) - \alpha$ has nonnegative Taylor coefficients. If G is the n-cycle, $T_G(x) = \sum_{i=1}^{n} \prod_{j \neq i} x_j$ and Szegő's result follows from Scott and Sokal's theorem with $x = (1, \ldots, 1)$.
The spanning-tree polynomial of a connected graph $G = (E, V)$ is

$$T_G(x) = \sum_{\mathcal{T}} \prod_{e \in \mathcal{T}} x_e, \quad x \in \mathbb{R}^E,$$

where the sum is over all spanning trees of G.

Theorem (Scott and Sokal, 2014)

Let $G = (V, E)$ be a series-parallel graph. Then for any $\alpha \geq 1/2$ and any positive vector $x \in \mathbb{R}^E > 0$, the function $y \mapsto T_G(x - y) - \alpha$ has nonnegative Taylor coefficients.

If G is the n-cycle, $T_G(x) = \sum_{i=1}^{n} \prod_{j \neq i} x_j$ and Szegő's result follows from Scott and Sokal's theorem with $x = (1, \ldots, 1)$.

A new insight from Scott and Sokal
A new insight from Scott and Sokal

The spanning-tree polynomial of a connected graph $G = (E, V)$ is

$$T_G(x) = \sum_{T} \prod_{e \in T} x_e, \quad x \in \mathbb{R}^E,$$

where the sum is over all spanning trees of G.

Theorem (Scott and Sokal, 2014)

Let $G = (V, E)$ be a series-parallel graph.
A new insight from Scott and Sokal

The spanning-tree polynomial of a connected graph $G = (E, V)$ is

$$T_G(x) = \sum_{T} \prod_{e \in T} x_e, \quad x \in \mathbb{R}^E,$$

where the sum is over all spanning trees of G.

Theorem (Scott and Sokal, 2014)

Let $G = (V, E)$ be a series-parallel graph. Then for any $\alpha \geq 1/2$...
The spanning-tree polynomial of a connected graph $G = (E, V)$ is

$$T_G(x) = \sum_{T} \prod_{e \in T} x_e, \quad x \in \mathbb{R}^E,$$

where the sum is over all spanning trees of G.

Theorem (Scott and Sokal, 2014)

Let $G = (V, E)$ be a series-parallel graph. Then for any $\alpha \geq 1/2$ and any positive vector $x \in \mathbb{R}_{>0}^E$,
A new insight from Scott and Sokal

The spanning-tree polynomial of a connected graph $G = (E, V)$ is

$$T_G(x) = \sum_{T} \prod_{e \in T} x_e, \quad x \in \mathbb{R}^E,$$

where the sum is over all spanning trees of G.

Theorem (Scott and Sokal, 2014)

Let $G = (V, E)$ be a series-parallel graph. Then for any $\alpha \geq 1/2$ and any positive vector $x \in \mathbb{R}^E_{>0}$, the function

$$y \mapsto T_G(x - y)^{-\alpha}$$

has nonnegative Taylor coefficients.
A new insight from Scott and Sokal

The spanning-tree polynomial of a connected graph $G = (E, V)$ is

$$T_G(x) = \sum_T \prod_{e \in T} x_e, \quad x \in \mathbb{R}^E,$$

where the sum is over all spanning trees of G.

Theorem (Scott and Sokal, 2014)

Let $G = (V, E)$ be a series-parallel graph. Then for any $\alpha \geq 1/2$ and any positive vector $x \in \mathbb{R}^E_{>0}$, the function

$$y \mapsto T_G(x - y)^{-\alpha}$$

has nonnegative Taylor coefficients.
A new insight from Scott and Sokal

The spanning-tree polynomial of a connected graph $G = (E, V)$ is

$$T_G(x) = \sum_{T} \prod_{e \in T} x_e, \quad x \in \mathbb{R}^E,$$

where the sum is over all spanning trees of G.

Theorem (Scott and Sokal, 2014)

Let $G = (V, E)$ be a series-parallel graph. Then for any $\alpha \geq 1/2$ and any positive vector $x \in \mathbb{R}^E_{>0}$, the function

$$y \mapsto T_G(x - y)^{-\alpha}$$

has nonnegative Taylor coefficients.

If G is the n-cycle, $T_G(x) = \sum_{i=1}^{n} \prod_{j \neq i} x_j$
A new insight from Scott and Sokal

The spanning-tree polynomial of a connected graph $G = (E, V)$ is

$$T_G(x) = \sum \prod_{e \in T} x_e, \quad x \in \mathbb{R}^E,$$

where the sum is over all spanning trees of G.

Theorem (Scott and Sokal, 2014)

Let $G = (V, E)$ be a series-parallel graph. Then for any $\alpha \geq 1/2$ and any positive vector $x \in \mathbb{R}_>^E$, the function

$$y \mapsto T_G(x - y)^{-\alpha}$$

has nonnegative Taylor coefficients.

If G is the n-cycle, $T_G(x) = \sum_{i=1}^n \prod_{j \neq i} x_j$ and Szegö’s result follows from Scott and Sokals’ theorem with $x = (1, \ldots, 1)$.

Complete monotonicity

Nonnegativity of Taylor coefficients of $y \mapsto T_G(x - y)^{-\alpha}$, $x \in \mathbb{R}^n_>$.
Complete monotonicity

Nonnegativity of Taylor coefficients of $y \mapsto T_G(x - y)^{-\alpha}$, $x \in \mathbb{R}^n_>$, just means that $T_G(x)^{-\alpha}$, $x \in \mathbb{R}^n_>$, is completely monotone.
Complete monotonicity

Nonnegativity of Taylor coefficients of \(y \mapsto T_G(x - y)^{-\alpha}, \ x \in \mathbb{R}^n_{>0} \), just means that \(T_G(x)^{-\alpha}, \ x \in \mathbb{R}^n_{>0} \), is completely monotone.

A smooth function \(f : \mathbb{R}^n_{>0} \to \mathbb{R}_{>0} \) is completely monotone (CM).
Complete monotonicity

Nonnegativity of Taylor coefficients of $y \mapsto T_G(x - y)^{-\alpha}$, $x \in \mathbb{R}^n_>$, just means that $T_G(x)^{-\alpha}$, $x \in \mathbb{R}^n_>$, is completely monotone.

A smooth function $f : \mathbb{R}^n_> \to \mathbb{R}_>$ is completely monotone (CM) if for any positive vector $x \in \mathbb{R}^n_>$
Complete monotonicity

Nonnegativity of Taylor coefficients of $y \mapsto T_G(x - y)^{-\alpha}$, $x \in \mathbb{R}^n_>$, just means that $T_G(x)^{-\alpha}$, $x \in \mathbb{R}^n_>$, is completely monotone.

A smooth function $f : \mathbb{R}^n_0 \rightarrow \mathbb{R}_>$ is completely monotone (CM) if for any positive vector $x \in \mathbb{R}^n_>$ all coefficients in the Taylor expansion of $y \mapsto f(x - y)$ are nonnegative.
Complete monotonicity

Nonnegativity of Taylor coefficients of $y \mapsto T_G(x-y)^{-\alpha}, x \in \mathbb{R}^n_>$, just means that $T_G(x)^{-\alpha}, x \in \mathbb{R}^n_>$, is completely monotone.

A smooth function $f : \mathbb{R}^n_> \to \mathbb{R}_>0$ is completely monotone (CM) if for any positive vector $x \in \mathbb{R}^n_>$ all coefficients in the Taylor expansion of $y \mapsto f(x-y)$ are nonnegative or, equivalently, if

$\left(-1 \right)^k \frac{\partial^k f}{\partial x_{i_1} \ldots \partial x_{i_k}}(x) \geq 0, \quad x \in \mathbb{R}^n_>$,
Complete monotonicity

Nonnegativity of Taylor coefficients of \(y \mapsto T_G(x - y)^{-\alpha}, x \in \mathbb{R}^n_>, \) just means that \(T_G(x)^{-\alpha}, x \in \mathbb{R}^n_>, \) is completely monotone.

A smooth function \(f : \mathbb{R}^n_> \rightarrow \mathbb{R}_>0 \) is completely monotone (CM) if for any positive vector \(x \in \mathbb{R}^n_>0 \) all coefficients in the Taylor expansion of \(y \mapsto f(x - y) \) are nonnegative or, equivalently, if

\[
(-1)^k \frac{\partial^k f}{\partial x_{i_1} \ldots \partial x_{i_k}}(x) \geq 0, \quad x \in \mathbb{R}^n_>,
\]

for any \(k = 1, 2, \ldots \).
Complete monotonicity

Nonnegativity of Taylor coefficients of \(y \mapsto T_G(x - y)^{-\alpha}, \ x \in \mathbb{R}^n_>, \) just means that \(T_G(x)^{-\alpha}, \ x \in \mathbb{R}^n_>, \) is completely monotone.

A smooth function \(f : \mathbb{R}^n_> \to \mathbb{R}_> \) is completely monotone (CM) if for any positive vector \(x \in \mathbb{R}^n_> \) all coefficients in the Taylor expansion of \(y \mapsto f(x - y) \) are nonnegative or, equivalently, if

\[
(-1)^k \frac{\partial^k f}{\partial x_{i_1} \ldots \partial x_{i_k}}(x) \geq 0, \quad x \in \mathbb{R}^n_>,
\]

for any \(k = 1, 2, \ldots \) and any \(i_1, \ldots, i_k = 1, \ldots, n. \)
Complete monotonicity

Nonnegativity of Taylor coefficients of \(y \mapsto T_G(x - y)^{-\alpha} \), \(x \in \mathbb{R}^n \), just means that \(T_G(x)^{-\alpha} \), \(x \in \mathbb{R}^n_{>0} \), is completely monotone.

A smooth function \(f : \mathbb{R}^n_{>0} \to \mathbb{R}_{>0} \) is completely monotone (CM) if for any positive vector \(x \in \mathbb{R}^n_{>0} \) all coefficients in the Taylor expansion of \(y \mapsto f(x - y) \) are nonnegative or, equivalently, if

\[
(-1)^k \frac{\partial^k f}{\partial x_{i_1} \ldots \partial x_{i_k}}(x) \geq 0, \quad x \in \mathbb{R}^n_{>0},
\]

for any \(k = 1, 2, \ldots \) and any \(i_1, \ldots, i_k = 1, \ldots, n \).

Simplest CM functions

\[
f(x) = \frac{1}{x}
\]
Complete monotonicity

Nonnegativity of Taylor coefficients of $y \mapsto T_G(x - y)^{-\alpha}$, $x \in \mathbb{R}^n_>$, just means that $T_G(x)^{-\alpha}$, $x \in \mathbb{R}^n_>$, is completely monotone.

A smooth function $f : \mathbb{R}^n_0 \to \mathbb{R}_0^>$ is completely monotone (CM) if for any positive vector $x \in \mathbb{R}^n_>$ all coefficients in the Taylor expansion of $y \mapsto f(x - y)$ are nonnegative or, equivalently, if

$$(-1)^k \frac{\partial^k f}{\partial x_{i_1} \ldots \partial x_{i_k}}(x) \geq 0, \quad x \in \mathbb{R}^n_>,$$

for any $k = 1, 2, \ldots$ and any $i_1, \ldots, i_k = 1, \ldots, n$.

Simplest CM functions

- $f(x) = \frac{1}{x}$: $(-1)^k f^{(k)}(x) = \frac{k!}{x^{k+1}} > 0$ for $x > 0$
Complete monotonicity

Nonnegativity of Taylor coefficients of \(y \mapsto T_G(x - y)^{-\alpha}, \) \(x \in \mathbb{R}^n_>, \) just means that \(T_G(x)^{-\alpha}, \) \(x \in \mathbb{R}^n_>, \) is completely monotone.

A smooth function \(f: \mathbb{R}^n_0 \rightarrow \mathbb{R}^0_> \) is completely monotone (CM) if for any positive vector \(x \in \mathbb{R}^n_0 \) all coefficients in the Taylor expansion of \(y \mapsto f(x - y) \) are nonnegative or, equivalently, if

\[
(-1)^k \frac{\partial^k f}{\partial x_{i_1} \ldots \partial x_{i_k}}(x) \geq 0, \quad x \in \mathbb{R}^n_>,
\]

for any \(k = 1, 2, \ldots \) and any \(i_1, \ldots, i_k = 1, \ldots, n. \)

Simplest CM functions

- \(f(x) = \frac{1}{x} : \) \((-1)^k f^{(k)}(x) = \frac{k!}{x^{k+1}} > 0 \) for \(x > 0 \)

- \(f(x) = e^{-x} \)
Complete monotonicity

Nonnegativity of Taylor coefficients of $y \mapsto T_G(x - y)^{-\alpha}$, $x \in \mathbb{R}_n^+$, just means that $T_G(x)^{-\alpha}$, $x \in \mathbb{R}_n^+$, is completely monotone.

A smooth function $f : \mathbb{R}_n^+ \to \mathbb{R}_+^+$ is completely monotone (CM) if for any positive vector $x \in \mathbb{R}_n^+$ all coefficients in the Taylor expansion of $y \mapsto f(x - y)$ are nonnegative or, equivalently, if

$$(-1)^k \frac{\partial^k f}{\partial x_{i_1} \ldots \partial x_{i_k}}(x) \geq 0, \quad x \in \mathbb{R}_n^+,$$

for any $k = 1, 2, \ldots$ and any $i_1, \ldots, i_k = 1, \ldots, n$.

Simplest CM functions

• $f(x) = \frac{1}{x}$: $(-1)^k f^{(k)}(x) = \frac{k!}{x^{k+1}} > 0$ for $x > 0$

• $f(x) = e^{-x}$: $(-1)^k f^{(k)}(x) = e^{-x} > 0$ for $x > 0$
Complete monotonicity and powers of homogeneous polynomials

We are interested in functions of the form $p^{-\alpha}$,
Complete monotonicity and powers of homogeneous polynomials

We are interested in functions of the form \(p^{-\alpha} \), where \(p \) is a real homogeneous polynomial.
Complete monotonicity and powers of homogeneous polynomials

We are interested in functions of the form $p^{-\alpha}$, where p is a real homogeneous polynomial. When is such function CM?
Complete monotonicity and powers of homogeneous polynomials

We are interested in functions of the form $p^{-\alpha}$, where p is a real homogeneous polynomial. When is such function CM?

Necessary conditions for $p^{-\alpha}$ to be CM:

Conjecture (Michalek, Sturmfels, Uhler and Zwiernik, 2015)

Let p be a real homogeneous polynomial that is stable and $p > 0$ on $\mathbb{R}^n > 0$. Then there is $\alpha = \alpha(p) > 0$ such that $p^{-\alpha}$ is CM.

Status: open in general!
Complete monotonicity and powers of homogeneous polynomials

We are interested in functions of the form \(p^{-\alpha} \), where \(p \) is a real homogeneous polynomial. When is such function CM?

Necessary conditions for \(p^{-\alpha} \) to be CM:

- \(\alpha \geq 0 \) (enough to look at \(p(x) = x^d, \ x > 0 \))

Sufficient conditions for \(p^{-\alpha} \) to be CM:

Conjecture (Michalek, Sturmfels, Uhler and Zwiernik, 2015)

Let \(p \) be a real homogeneous polynomial that is stable and \(p > 0 \) on \(\mathbb{R}^n > 0 \).

Then there is \(\alpha = \alpha(p) > 0 \) such that \(p^{-\alpha} \) is CM.

Status: open in general!
Complete monotonicity and powers of homogeneous polynomials

We are interested in functions of the form $p^{-\alpha}$, where p is a real homogeneous polynomial. When is such function CM?

Necessary conditions for $p^{-\alpha}$ to be CM:

- $\alpha \geq 0$ (enough to look at $p(x) = x^d$, $x > 0$)
- p must be a **stable polynomial**, that is, $p(x + iy) \neq 0$ for $x \in \mathbb{R}_{>0}^n$ and $y \in \mathbb{R}^n$ (Scott and Sokal, 2014).

What about sufficient conditions for $p^{-\alpha}$ to be CM?

Conjecture (Michalek, Sturmfels, Uhler and Zwiernik, 2015)

Let p be a real homogeneous polynomial that is stable and $p > 0$ on $\mathbb{R}_{>0}^n$. Then there is $\alpha = \alpha(p) > 0$ such that $p^{-\alpha}$ is CM.

Status: open in general!
We are interested in functions of the form $p^{-\alpha}$, where p is a real homogeneous polynomial. When is such function CM?

Necessary conditions for $p^{-\alpha}$ to be CM:

- $\alpha \geq 0$ (enough to look at $p(x) = x^d$, $x > 0$)
- p must be a stable polynomial, that is, $p(x + iy) \neq 0$ for $x \in \mathbb{R}_{>0}^n$ and $y \in \mathbb{R}^n$ (Scott and Sokal, 2014).

What about sufficient conditions for $p^{-\alpha}$ to be CM?
Complete monotonicity and powers of homogeneous polynomials

We are interested in functions of the form $p^{-\alpha}$, where p is a real homogeneous polynomial. When is such function CM?

Necessary conditions for $p^{-\alpha}$ to be CM:

- $\alpha \geq 0$ (enough to look at $p(x) = x^d$, $x > 0$)
- p must be a stable polynomial, that is, $p(x + iy) \neq 0$ for $x \in \mathbb{R}^n_{>0}$ and $y \in \mathbb{R}^n$ (Scott and Sokal, 2014).

What about sufficient conditions for $p^{-\alpha}$ to be CM?
Complete monotonicity and powers of homogeneous polynomials

We are interested in functions of the form $p^{-\alpha}$, where p is a real homogeneous polynomial. When is such function CM?

Necessary conditions for $p^{-\alpha}$ to be CM:

- $\alpha \geq 0$ (enough to look at $p(x) = x^d$, $x > 0$)
- p must be a stable polynomial, that is, $p(x + iy) \neq 0$ for $x \in \mathbb{R}_{>0}^n$ and $y \in \mathbb{R}^n$ (Scott and Sokal, 2014).

What about sufficient conditions for $p^{-\alpha}$ to be CM?

Conjecture (Michalek, Sturmfels, Uhler and Zwiernik, 2015)
Complete monotonicity and powers of homogeneous polynomials

We are interested in functions of the form $p^{-\alpha}$, where p is a real homogeneous polynomial. When is such function CM?

Necessary conditions for $p^{-\alpha}$ to be CM:

- $\alpha \geq 0$ (enough to look at $p(x) = x^d$, $x > 0$)
- p must be a stable polynomial, that is, $p(x + iy) \neq 0$ for $x \in \mathbb{R}_{>0}^n$ and $y \in \mathbb{R}^n$ (Scott and Sokal, 2014).

What about sufficient conditions for $p^{-\alpha}$ to be CM?

Conjecture (Michalek, Sturmfels, Uhler and Zwiernik, 2015)

Let p be a real homogeneous polynomial that is stable
Complete monotonicity and powers of homogeneous polynomials

We are interested in functions of the form $p^{-\alpha}$, where p is a real homogeneous polynomial. When is such function CM?

Necessary conditions for $p^{-\alpha}$ to be CM:

- $\alpha \geq 0$ (enough to look at $p(x) = x^d$, $x > 0$)
- p must be a stable polynomial, that is, $p(x + iy) \neq 0$ for $x \in \mathbb{R}^n_{>0}$ and $y \in \mathbb{R}^n$ (Scott and Sokal, 2014).

What about sufficient conditions for $p^{-\alpha}$ to be CM?

Conjecture (Michalek, Sturmfels, Uhler and Zwiernik, 2015)

Let p be a real homogeneous polynomial that is stable and $p > 0$ on $\mathbb{R}^n_{>0}$.
Complete monotonicity and powers of homogeneous polynomials

We are interested in functions of the form $p^{-\alpha}$, where p is a real homogeneous polynomial. When is such function CM?

Necessary conditions for $p^{-\alpha}$ to be CM:

- $\alpha \geq 0$ (enough to look at $p(x) = x^d$, $x > 0$)
- p must be a stable polynomial, that is, $p(x + iy) \neq 0$ for $x \in \mathbb{R}_{>0}^n$ and $y \in \mathbb{R}^n$ (Scott and Sokal, 2014).

What about sufficient conditions for $p^{-\alpha}$ to be CM?

Conjecture (Michalek, Sturmfels, Uhler and Zwiernik, 2015)

Let p be a real homogeneous polynomial that is stable and $p > 0$ on $\mathbb{R}_{>0}^n$. Then there is $\alpha = \alpha(p) > 0$ such that $p^{-\alpha}$ is CM.
Complete monotonicity and powers of homogeneous polynomials

We are interested in functions of the form $p^{-\alpha}$, where p is a real homogeneous polynomial. When is such function CM?

Necessary conditions for $p^{-\alpha}$ to be CM:

- $\alpha \geq 0$ (enough to look at $p(x) = x^d$, $x > 0$)
- p must be a stable polynomial, that is, $p(x + iy) \neq 0$ for $x \in \mathbb{R}_{>0}^n$ and $y \in \mathbb{R}^n$ (Scott and Sokal, 2014).

What about sufficient conditions for $p^{-\alpha}$ to be CM?

Conjecture (Michalek, Sturmfels, Uhler and Zwiernik, 2015)

Let p be a real homogeneous polynomial that is stable and $p > 0$ on $\mathbb{R}_{>0}^n$. Then there is $\alpha = \alpha(p) > 0$ such that $p^{-\alpha}$ is CM.

Status: open in general!
Determinantal polynomials

Let A_1, \ldots, A_n be $d \times d$ positive semi-definite real symmetric matrices such that their span contains a matrix of full rank. Then the determinantal polynomial $\det(x_1 A_1 + \cdots + x_n A_n)$ is stable.

Theorem (Scott and Sokal, 2014)

Let $\alpha = 0, 1, 2, 1, 3, 2, \ldots$ or $\alpha \geq d - 1, 2$. Then the function $x \in \mathbb{R}^n > 0 \mapsto \det(x_1 A_1 + \cdots + x_n A_n) - \alpha$ is CM. If A_1, \ldots, A_n span the space of $d \times d$ real symmetric matrices, then CM for $p - \alpha$ implies that α is of the above form.

Corollary

If p is a stable polynomial and some rth power $p(x)^r = \det(x_1 A_1 + \cdots + x_n A_n)$ of p is determinantal with matrices A_k of size $d \times d$, then $p - r \alpha$ is CM for α in the above range.
Determinantal polynomials

Let A_1, \ldots, A_n be $d \times d$ positive semi-definite real symmetric matrices
Determinantal polynomials

Let A_1, \ldots, A_n be $d \times d$ positive semi-definite real symmetric matrices such that their span contains a matrix of full rank.
Determinantal polynomials

Let A_1, \ldots, A_n be $d \times d$ positive semi-definite real symmetric matrices such that their span contains a matrix of full rank. Then the determinantal polynomial $\det(x_1A_1 + \cdots + x_nA_n)$ is stable.
Determinantal polynomials

Let A_1, \ldots, A_n be $d \times d$ positive semi-definite real symmetric matrices such that their span contains a matrix of full rank. Then the determinantal polynomial $\det(x_1 A_1 + \cdots + x_n A_n)$ is stable.

Theorem (Scott and Sokal, 2014)

Let $\alpha = 0, \frac{1}{2}, 1, \frac{3}{2}, \ldots$ or $\alpha \geq \frac{d-1}{2}$.
Determinantal polynomials

Let A_1, \ldots, A_n be $d \times d$ positive semi-definite real symmetric matrices such that their span contains a matrix of full rank. Then the determinantal polynomial $\det(x_1 A_1 + \cdots + x_n A_n)$ is stable.

Theorem (Scott and Sokal, 2014)

Let $\alpha = 0, \frac{1}{2}, 1, \frac{3}{2}, \ldots$ or $\alpha \geq \frac{d-1}{2}$. Then the function

$$x \in \mathbb{R}^n_{>0} \mapsto \det(x_1 A_1 + \cdots + x_n A_n)^{-\alpha}$$

is CM.
Determinantal polynomials

Let A_1, \ldots, A_n be $d \times d$ positive semi-definite real symmetric matrices such that their span contains a matrix of full rank. Then the determinantal polynomial $\det(x_1 A_1 + \cdots + x_n A_n)$ is stable.

Theorem (Scott and Sokal, 2014)

Let $\alpha = 0, \frac{1}{2}, 1, \frac{3}{2}, \ldots$ or $\alpha \geq \frac{d-1}{2}$. Then the function

$$x \in \mathbb{R}^n_+ \mapsto \det(x_1 A_1 + \cdots + x_n A_n)^{-\alpha}$$

is CM. If A_1, \ldots, A_n span the space of $d \times d$ real symmetric matrices,
Determinantal polynomials

Let A_1, \ldots, A_n be $d \times d$ positive semi-definite real symmetric matrices such that their span contains a matrix of full rank. Then the determinantal polynomial $\det(x_1A_1 + \cdots + x_nA_n)$ is stable.

Theorem (Scott and Sokal, 2014)

Let $\alpha = 0, \frac{1}{2}, 1, \frac{3}{2}, \ldots$ or $\alpha \geq \frac{d-1}{2}$. Then the function

$$x \in \mathbb{R}^n_+ \mapsto \det(x_1A_1 + \cdots + x_nA_n)^{-\alpha}$$

is CM. If A_1, \ldots, A_n span the space of $d \times d$ real symmetric matrices, then CM for $p^{-\alpha}$ implies that α is of the above form.

Corollary

If p is a stable polynomial
Determinantal polynomials

Let A_1, \ldots, A_n be $d \times d$ positive semi-definite real symmetric matrices such that their span contains a matrix of full rank. Then the determinantal polynomial $\det(x_1A_1 + \cdots + x_nA_n)$ is stable.

Theorem (Scott and Sokal, 2014)

Let $\alpha = 0, \frac{1}{2}, 1, \frac{3}{2}, \ldots$ or $\alpha \geq \frac{d-1}{2}$. Then the function

$$x \in \mathbb{R}^n_+ \mapsto \det(x_1A_1 + \cdots + x_nA_n)^{-\alpha}$$

is CM. If A_1, \ldots, A_n span the space of $d \times d$ real symmetric matrices, then CM for $p^{-\alpha}$ implies that α is of the above form.

Corollary

If p is a stable polynomial and some rth power $p(x)^r = \det(x_1A_1 + \cdots + x_nA_n)$ of p is determinantal with matrices A_k of size $d \times d$,

Determinantal polynomials

Let A_1, \ldots, A_n be $d \times d$ positive semi-definite real symmetric matrices such that their span contains a matrix of full rank. Then the determinantal polynomial $\det(x_1A_1 + \cdots + x_nA_n)$ is stable.

Theorem (Scott and Sokal, 2014)

Let $\alpha = 0, \frac{1}{2}, 1, \frac{3}{2}, \ldots$ or $\alpha \geq \frac{d-1}{2}$. Then the function

$$x \in \mathbb{R}_n^> \mapsto \det(x_1A_1 + \cdots + x_nA_n)^{-\alpha}$$

is CM. If A_1, \ldots, A_n span the space of $d \times d$ real symmetric matrices, then CM for $p^{-\alpha}$ implies that α is of the above form.

Corollary

If p is a stable polynomial and some rth power $p(x)^r = \det(x_1A_1 + \cdots + x_nA_n)$ of p is determinantal with matrices A_k of size $d \times d$, then $p^{-r\alpha}$ is CM.
Determinantal polynomials

Let A_1, \ldots, A_n be $d \times d$ positive semi-definite real symmetric matrices such that their span contains a matrix of full rank. Then the determinantal polynomial $\det(x_1A_1 + \cdots + x_nA_n)$ is stable.

Theorem (Scott and Sokal, 2014)

Let $\alpha = 0, \frac{1}{2}, 1, \frac{3}{2}, \ldots$ or $\alpha \geq \frac{d-1}{2}$. Then the function

$$x \in \mathbb{R}^n_{>0} \mapsto \det(x_1A_1 + \cdots + x_nA_n)^{-\alpha}$$

is CM. If A_1, \ldots, A_n span the space of $d \times d$ real symmetric matrices, then CM for $p^{-\alpha}$ implies that α is of the above form.

Corollary

If p is a stable polynomial and some rth power $p(x)^r = \det(x_1A_1 + \cdots + x_nA_n)$ of p is determinantal with matrices A_k of size $d \times d$, then $p^{-r\alpha}$ is CM for α in the above range.
Quadratic forms

Let A be a non-singular real symmetric matrix of size $n \times n$ such that the quadratic form $p_A(x) = x^tAx$ is stable and $p_A(x) > 0$ on $\mathbb{R}^n > 0$ (the signature of A is then necessarily $(+, -, \ldots, -)$).

Theorem (Scott and Sokal, 2014) $p_A(x) - \alpha$ is CM if and only if $\alpha = 0$ or $\alpha \geq \frac{n-2}{2}$.

Elementary symmetric polynomials $E^d_n(x) = \sum_{1 \leq i_1 < \cdots < i_d \leq n} x_{i_1} \cdots x_{i_d}, x \in \mathbb{R}^n$, are stable.

Corollary $E^{-\alpha}_2, n$ is CM if and only if $\alpha = 0$ or $\alpha \geq \left(\frac{n-2}{2}\right)$.

What about complete monotonicity of $E^{-\alpha}_d, n$ for other d?
Quadratic forms

Let A be a non-singular real symmetric matrix of size $n \times n$
Quadratic forms

Let A be a non-singular real symmetric matrix of size $n \times n$ such that the quadratic form $p_A(x) = x^t A x$ is stable.

Theorem (Scott and Sokal, 2014)

$p_A(x) - \alpha$ is CM if and only if $\alpha = 0$ or $\alpha \geq \frac{n - 2}{2}$.

Corollary

$E_{-\alpha, n}$ is CM if and only if $\alpha = 0$ or $\alpha \geq \left(\frac{n - 2}{2}\right)$.

What about complete monotonicity of $E_{-\alpha, n}$ for other d?
Quadratic forms

Let A be a non-singular real symmetric matrix of size $n \times n$ such that the quadratic form $p_A(x) = x^t A x$ is stable and $p_A > 0$ on $\mathbb{R}_n > 0$.
Quadratic forms

Let A be a non-singular real symmetric matrix of size $n \times n$ such that the quadratic form $p_A(x) = x^t A x$ is stable and $p_A > 0$ on $\mathbb{R}^n_{>0}$ (the signature of A is then necessarily $(+, -, \ldots, -)$).
Quadratic forms

Let A be a non-singular real symmetric matrix of size $n \times n$ such that the quadratic form $p_A(x) = x^t A x$ is stable and $p_A > 0$ on $\mathbb{R}_n^>$ (the signature of A is then necessarily $(+, -, \ldots, -)$).

Theorem (Scott and Sokal, 2014)

Elementary symmetric polynomials $E_d, n(x)$ are stable.

Corollary $E_{−α^2, n}$ is CM if and only if $α = 0$ or $α ≥ (n−2)/2$.

What about complete monotonicity of $E_{−α^d, n}$ for other d?
Quadratic forms

Let A be a non-singular real symmetric matrix of size $n \times n$ such that the quadratic form $p_A(x) = x^t A x$ is stable and $p_A > 0$ on \mathbb{R}_n^0 (the signature of A is then necessarily $(+, -, \ldots, -)$).

Theorem (Scott and Sokal, 2014)

$p_A(x)^{-\alpha}$ is CM
Quadratic forms

Let A be a non-singular real symmetric matrix of size $n \times n$ such that the quadratic form $p_A(x) = x^t A x$ is stable and $p_A > 0$ on $\mathbb{R}^n_>$ (the signature of A is then necessarily $(+, -, \ldots, -)$).

Theorem (Scott and Sokal, 2014)

$p_A(x)^{-\alpha}$ is CM if and only if $\alpha = 0$
Quadratic forms

Let A be a non-singular real symmetric matrix of size $n \times n$ such that the quadratic form $p_A(x) = x^t A x$ is stable and $p_A > 0$ on $\mathbb{R}^n_>$ (the signature of A is then necessarily $(+, -, \ldots, -)$).

Theorem (Scott and Sokal, 2014)

$p_A(x)^{-\alpha}$ is CM if and only if $\alpha = 0$ or $\alpha \geq \frac{n-2}{2}$.
Quadratic forms

Let A be a non-singular real symmetric matrix of size $n \times n$ such that the quadratic form $p_A(x) = x^t A x$ is stable and $p_A > 0$ on \mathbb{R}^n_0 (the signature of A is then necessarily $(+, -, \ldots, -)$).

Theorem (Scott and Sokal, 2014)
$p_A(x)^{-\alpha}$ is CM if and only if $\alpha = 0$ or $\alpha \geq \frac{n-2}{2}$.

Elementary symmetric polynomials

$$E_{d,n}(x) = \sum_{1 \leq i_1 < \cdots < i_d \leq n} x_{i_1} \cdots x_{i_d}, \quad x \in \mathbb{R}^n,$$
Quadratic forms

Let A be a non-singular real symmetric matrix of size $n \times n$ such that the quadratic form $p_A(x) = x^t A x$ is stable and $p_A > 0$ on $\mathbb{R}^n_{>0}$ (the signature of A is then necessarily $(+, - , \ldots , -)$).

Theorem (Scott and Sokal, 2014)

$p_A(x)^{-\alpha}$ is CM if and only if $\alpha = 0$ or $\alpha \geq \frac{n-2}{2}$.

Elementary symmetric polynomials

$$E_{d,n}(x) = \sum_{1 \leq i_1 < \cdots < i_d \leq n} x_{i_1} \cdots x_{i_d}, \quad x \in \mathbb{R}^n,$$

are stable.
Quadratic forms

Let A be a non-singular real symmetric matrix of size $n \times n$ such that the quadratic form $p_A(x) = x^t Ax$ is stable and $p_A > 0$ on $\mathbb{R}_{>0}^n$ (the signature of A is then necessarily $(+, -, \ldots, -)$).

Theorem (Scott and Sokal, 2014)

$p_A(x)^{-\alpha}$ is CM if and only if $\alpha = 0$ or $\alpha \geq \frac{n-2}{2}$.

Elementary symmetric polynomials

$$E_{d,n}(x) = \sum_{1 \leq i_1 < \ldots < i_d \leq n} x_{i_1} \ldots x_{i_d}, \quad x \in \mathbb{R}^n,$$

are stable.

Corollary

$E_{2,n}^{\alpha}$ is CM if and only if $\alpha = 0$
Quadratic forms

Let A be a non-singular real symmetric matrix of size $n \times n$ such that the quadratic form $p_A(x) = x^t A x$ is stable and $p_A > 0$ on $\mathbb{R}_{>0}^n$ (the signature of A is then necessarily $(+, -, \ldots, -)$).

Theorem (Scott and Sokal, 2014)

$p_A(x)^{-\alpha}$ is CM if and only if $\alpha = 0$ or $\alpha \geq \frac{n-2}{2}$.

Elementary symmetric polynomials

$$E_{d,n}(x) = \sum_{1 \leq i_1 < \cdots < i_d \leq n} x_{i_1} \cdots x_{i_d}, \quad x \in \mathbb{R}^n,$$

are stable.

Corollary

$E_{2,n}^{-\alpha}$ is CM if and only if $\alpha = 0$ or $\alpha \geq (n - 2)/2$.

What about complete monotonicity of $E_{d,n}^{-\alpha}$ for other d?
Elementary symmetric polynomials

- $d = 1$:

\[E_{1,n}^{-\alpha} = (x_1 + \cdots + x_n)^{-\alpha} \]
Elementary symmetric polynomials

- $d = 1$:
 \[E_{1,n}^{-\alpha} = (x_1 + \cdots + x_n)^{-\alpha} \]
 is CM for any $\alpha \geq 0$
Elementary symmetric polynomials

- $d = 1$:
 \[E_{1,n}^{-\alpha} = (x_1 + \cdots + x_n)^{-\alpha} \]
 is CM for any $\alpha \geq 0$ (since $x \mapsto x^{-\alpha}$, $x \in \mathbb{R}_{>0}$, is CM)
Elementary symmetric polynomials

- **$d = 1$:**
 \[E_{1,n}^{-\alpha} = (x_1 + \cdots + x_n)^{-\alpha} \]
 is CM for any $\alpha \geq 0$ (since $x \mapsto x^{-\alpha}$, $x \in \mathbb{R}_{>0}$, is CM)

- **$d = 2$:**
 \[E_{2,n}^{-\alpha} = \left(\sum_{1 \leq i < j \leq n} x_i x_j \right)^{-\alpha} \]
 is CM iff $\alpha = 0$ or $\alpha \geq \frac{n-2}{2}$ (Scott and Sokal, 2014)
Elementary symmetric polynomials

- $d = 1$:
 \[E_{1,n}^{-\alpha} = (x_1 + \cdots + x_n)^{-\alpha} \]
 is CM for any $\alpha \geq 0$ (since $x \mapsto x^{-\alpha}$, $x \in \mathbb{R}_{>0}$, is CM)

- $d = 2$:
 \[E_{2,n}^{-\alpha} = \left(\sum_{1 \leq i < j \leq n} x_i x_j \right)^{-\alpha} \]
 is CM iff $\alpha = 0$ or $\alpha \geq \frac{n-2}{2}$ (Scott and Sokal, 2014)

- $d = n - 1$:
 \[E_{n-1,n}^{-\alpha} = \left(\sum_{i=1}^{n} \prod_{j \neq i} x_j \right)^{-\alpha} \]
 is CM iff $\alpha = 0$ or $\alpha \geq \frac{1}{2}$ (Scott and Sokal, 2014)

- $d = n$:
 \[E_{n,n}^{-\alpha} = (x_1 \cdots x_n)^{-\alpha} \]
Elementary symmetric polynomials

- **$d = 1$:**
 \[E_{1,n}^{-\alpha} = (x_1 + \cdots + x_n)^{-\alpha} \]
 is CM for any $\alpha \geq 0$ (since $x \mapsto x^{-\alpha}$, $x \in \mathbb{R}_{>0}$, is CM)

- **$d = 2$:**
 \[E_{2,n}^{-\alpha} = \left(\sum_{1 \leq i < j \leq n} x_i x_j \right)^{-\alpha} \]
 is CM iff $\alpha = 0$ or $\alpha \geq \frac{n-2}{2}$ (Scott and Sokal, 2014)

- **$d = n - 1$:**
 \[E_{n-1,n}^{-\alpha} = \left(\sum_{i=1}^{n} \prod_{j \neq i} x_j \right)^{-\alpha} \]
 is CM iff $\alpha = 0$ or $\alpha \geq \frac{1}{2}$ (Scott and Sokal, 2014)

- **$d = n$:**
 \[E_{n,n}^{-\alpha} = (x_1 \cdots x_n)^{-\alpha} \]
 is CM for any $\alpha \geq 0$
Elementary symmetric polynomials

- $d = 1$:
 \[E_{1,n}^{-\alpha} = (x_1 + \cdots + x_n)^{-\alpha} \]
 is CM for any $\alpha \geq 0$ (since $x \mapsto x^{-\alpha}$, $x \in \mathbb{R}_{>0}$, is CM)

- $d = 2$:
 \[E_{2,n}^{-\alpha} = \left(\sum_{1 \leq i < j \leq n} x_i x_j \right)^{-\alpha} \]
 is CM iff $\alpha = 0$ or $\alpha \geq \frac{n-2}{2}$ (Scott and Sokal, 2014)

- $d = n - 1$:
 \[E_{n-1,n}^{-\alpha} = \left(\sum_{i=1}^{n} \prod_{j \neq i} x_j \right)^{-\alpha} \]
 is CM iff $\alpha = 0$ or $\alpha \geq \frac{1}{2}$ (Scott and Sokal, 2014)

- $d = n$:
 \[E_{n,n}^{-\alpha} = (x_1 \cdots x_n)^{-\alpha} \]
 is CM for any $\alpha \geq 0$ (since product of CM functions is CM)
Elementary symmetric polynomials are CM

Theorem (K., Michalek and Sturmfels, 2019)
Elementary symmetric polynomials are CM

Theorem (K., Michalek and Sturmfels, 2019)

For any $n \geq 1$ and $1 \leq d \leq n$ there is $\alpha_{d,n} > 0$
Elementary symmetric polynomials are CM

Theorem (K., Michalek and Sturmfels, 2019)

For any $n \geq 1$ and $1 \leq d \leq n$ there is $\alpha_{d,n} > 0$ such that for all $\alpha \geq \alpha_{d,n}$
Elementary symmetric polynomials are CM

Theorem (K., Michalek and Sturmfels, 2019)

For any \(n \geq 1 \) and \(1 \leq d \leq n \) there is \(\alpha_{d,n} > 0 \) such that for all \(\alpha \geq \alpha_{d,n} \) the function \(E_{d,n}^{-\alpha} = \left(\sum_{1 \leq i_1 < \ldots < i_d \leq n} x_{i_1} \ldots x_{i_d} \right)^{-\alpha} \) is CM.
Elementary symmetric polynomials are CM

Theorem (K., Michalek and Sturmfels, 2019)

For any \(n \geq 1 \) and \(1 \leq d \leq n \) there is \(\alpha_{d,n} > 0 \) such that for all \(\alpha \geq \alpha_{d,n} \) the function \(E_{d,n}^{-\alpha} = (\sum_{1 \leq i_1 < \ldots < i_d \leq n} x_{i_1} \ldots x_{i_d})^{-\alpha} \) is CM.

Thus conjecture of Michalek et al. holds for all \(E_{d,n} \)!
Elementary symmetric polynomials are CM

Theorem (K., Michalek and Sturmfels, 2019)

For any \(n \geq 1 \) and \(1 \leq d \leq n \) there is \(\alpha_{d,n} > 0 \) such that for all \(\alpha \geq \alpha_{d,n} \) the function \(E_{d,n}^{-\alpha} = \left(\sum_{1 \leq i_1 < \ldots < i_d \leq n} x_{i_1} \ldots x_{i_d} \right)^{-\alpha} \) is CM.

Thus conjecture of Michalek et al. holds for all \(E_{d,n} \! \)!

However, \(\alpha_{d,n} \) from the theorem is very large
Elementary symmetric polynomials are CM

Theorem (K., Michalek and Sturmfels, 2019)

For any \(n \geq 1 \) and \(1 \leq d \leq n \) there is \(\alpha_{d,n} > 0 \) such that for all \(\alpha \geq \alpha_{d,n} \) the function \(E^{-\alpha}_{d,n} = (\sum_{1 \leq i_1 < \ldots < i_d \leq n} x_{i_1} \ldots x_{i_d})^{-\alpha} \) is CM.

Thus conjecture of Michalek et al. holds for all \(E_{d,n} \! \)!

However, \(\alpha_{d,n} \) from the theorem is very large (\(\alpha_{d,n} \geq \frac{(n-d)(n-1)!}{2(n-d+1)!} \)!)
Elementary symmetric polynomials are CM

Theorem (K., Michalek and Sturmfels, 2019)

For any \(n \geq 1 \) and \(1 \leq d \leq n \) there is \(\alpha_{d,n} > 0 \) such that for all \(\alpha \geq \alpha_{d,n} \) the function \(E_{d,n}^{-\alpha} = \left(\sum_{1 \leq i_1 < \cdots < i_d \leq n} x_{i_1} \cdots x_{i_d} \right)^{-\alpha} \) is CM.

Thus conjecture of Michalek et al. holds for all \(E_{d,n}! \)

However, \(\alpha_{d,n} \) from the theorem is very large (\(\alpha_{d,n} \geq \frac{(n-d)(n-1)!}{2(n-d+1)!} \))!

\[
E_{2,n}^{-\alpha} \text{ is CM iff } \alpha = 0 \text{ or } \alpha \geq \frac{n-2}{2}
\]

\[
E_{n-1,n}^{-\alpha} \text{ is CM iff } \alpha = 0 \text{ or } \alpha \geq \frac{1}{2}
\]

\[
E_{n,n}^{-\alpha} \text{ is CM iff } \alpha \geq 0
\]
Elementary symmetric polynomials are CM

Theorem (K., Michalek and Sturmfels, 2019)

For any \(n \geq 1 \) and \(1 \leq d \leq n \) there is \(\alpha_{d,n} > 0 \) such that for all \(\alpha \geq \alpha_{d,n} \) the function \(E_{d,n}^{-\alpha} = \left(\sum_{1 \leq i_1 < \ldots < i_d \leq n} x_{i_1} \ldots x_{i_d} \right)^{-\alpha} \) is CM.

Thus conjecture of Michalek et al. holds for all \(E_{d,n}! \)

However, \(\alpha_{d,n} \) from the theorem is very large (\(\alpha_{d,n} \geq \frac{(n-d)(n-1)!}{2(n-d+1)!} \))!

\[E_{2,n}^{-\alpha} \text{ is CM iff } \alpha = 0 \text{ or } \alpha \geq \frac{n-2}{2} \]

\[E_{n-1,n}^{-\alpha} \text{ is CM iff } \alpha = 0 \text{ or } \alpha \geq \frac{1}{2} \]

\[E_{n,n}^{-\alpha} \text{ is CM iff } \alpha \geq 0 \]

Based on these cases and some experiments Scott and Sokal conjectured the following.
Elementary symmetric polynomials are CM

Theorem (K., Michalek and Sturmfels, 2019)

For any $n \geq 1$ and $1 \leq d \leq n$ there is $\alpha_{d,n} > 0$ such that for all $\alpha \geq \alpha_{d,n}$ the function $E_{d,n}^{-\alpha} = (\sum_{1 \leq i_1 < \ldots < i_d \leq n} x_{i_1} \ldots x_{i_d})^{-\alpha}$ is CM.

Thus conjecture of Michalek et al. holds for all $E_{d,n}!$

However, $\alpha_{d,n}$ from the theorem is very large ($\alpha_{d,n} \geq \frac{(n-d)(n-1)!}{2(n-d+1)!}$!)

- $E_{2,n}^{-\alpha}$ is CM iff $\alpha = 0$ or $\alpha \geq \frac{n-2}{2}$
- $E_{n-1,n}^{-\alpha}$ is CM iff $\alpha = 0$ or $\alpha \geq \frac{1}{2}$
- $E_{n,n}^{-\alpha}$ is CM iff $\alpha \geq 0$

Based on these cases and some experiments Scott and Sokal conjectured the following.

Conjecture (Scott and Sokal, 2014)

Let $2 \leq d \leq n$.

Elementary symmetric polynomials are CM

Theorem (K., Michalek and Sturmfels, 2019)

For any \(n \geq 1 \) and \(1 \leq d \leq n \) there is \(\alpha_{d,n} > 0 \) such that for all \(\alpha \geq \alpha_{d,n} \) the function \(E_{d,n}^{-\alpha} = (\sum_{1 \leq i_1 < \ldots < i_d \leq n} x_{i_1} \ldots x_{i_d})^{-\alpha} \) is CM.

Thus conjecture of Michalek et al. holds for all \(E_{d,n}! \)

However, \(\alpha_{d,n} \) from the theorem is very large (\(\alpha_{d,n} \geq \frac{(n-d)(n-1)!}{2(n-d+1)!} \))!

\[
\begin{align*}
E_{2,n}^{-\alpha} \text{ is CM iff } & \alpha = 0 \quad \text{or} \quad \alpha \geq \frac{n-2}{2} \\
E_{n-1,n}^{-\alpha} \text{ is CM iff } & \alpha = 0 \quad \text{or} \quad \alpha \geq \frac{1}{2} \\
E_{n,n}^{-\alpha} \text{ is CM iff } & \alpha \geq 0
\end{align*}
\]

Based on these cases and some experiments Scott and Sokal conjectured the following.

Conjecture (Scott and Sokal, 2014)

Let \(2 \leq d \leq n \). Then \(E_{d,n}^{-\alpha} \) is CM if and only if
Elementary symmetric polynomials are CM

Theorem (K., Michalek and Sturmfels, 2019)
For any \(n \geq 1 \) and \(1 \leq d \leq n \) there is \(\alpha_{d,n} > 0 \) such that for all \(\alpha \geq \alpha_{d,n} \) the function \(E_{d,n}^{-\alpha} = (\sum_{1 \leq i_1 < \ldots < i_d \leq n} x_{i_1} \ldots x_{i_d})^{-\alpha} \) is CM.

Thus conjecture of Michalek et al. holds for all \(E_{d,n} \)!

However, \(\alpha_{d,n} \) from the theorem is very large (\(\alpha_{d,n} \geq \frac{(n-d)(n-1)!}{2(n-d+1)!} \))!

\[E_{2,n}^{-\alpha} \text{ is CM iff } \alpha = 0 \text{ or } \alpha \geq \frac{n-2}{2} \]
\[E_{n-1,n}^{-\alpha} \text{ is CM iff } \alpha = 0 \text{ or } \alpha \geq \frac{1}{2} \]
\[E_{n,n}^{-\alpha} \text{ is CM iff } \alpha \geq 0 \]

Based on these cases and some experiments Scott and Sokal conjectured the following.

Conjecture (Scott and Sokal, 2014)
Let \(2 \leq d \leq n \). Then \(E_{d,n}^{-\alpha} \) is CM if and only if \(\alpha = 0 \) or \(\alpha \geq \frac{n-d}{2} \).
Bounds on α with CM $E_{d,n}^{-\alpha}$

Conjecture (Scott and Sokal, 2014)

Let $2 \leq d \leq n$. Then $E_{d,n}^{-\alpha}$ is CM if and only if $\alpha = 0$ or $\alpha \geq \frac{n-d}{2}$.
Bounds on α with CM $E_{d,n}^{-\alpha}$

Conjecture (Scott and Sokal, 2014)

Let $2 \leq d \leq n$. Then $E_{d,n}^{-\alpha}$ is CM if and only if $\alpha = 0$ or $\alpha \geq \frac{n-d}{2}$.

The condition on α is necessary for $E_{d,n}^{-\alpha}$ to be CM!
Bounds on α with CM $E_{d,n}^{-\alpha}$

Conjecture (Scott and Sokal, 2014)
Let $2 \leq d \leq n$. Then $E_{d,n}^{-\alpha}$ is CM if and only if $\alpha = 0$ or $\alpha \geq \frac{n-d}{2}$.

The condition on α is necessary for $E_{d,n}^{-\alpha}$ to be CM!

Theorem (K., Michalek, Sturmfels, 2019)
If $E_{d,n}^{-\alpha}$, $d \geq 2$, is completely monotone,
Bounds on α with CM $E_{d,n}^{-\alpha}$

Conjecture (Scott and Sokal, 2014)

Let $2 \leq d \leq n$. Then $E_{d,n}^{-\alpha}$ is CM if and only if $\alpha = 0$ or $\alpha \geq \frac{n-d}{2}$.

The condition on α is necessary for $E_{d,n}^{-\alpha}$ to be CM!

Theorem (K., Michalek, Sturmfels, 2019)

If $E_{d,n}^{-\alpha}$, $d \geq 2$, is completely monotone, then $\alpha = 0$ or $\alpha \geq \frac{n-d}{2}$.
Bounds on α with CM $E_{d,n}^{−\alpha}$

Conjecture (Scott and Sokal, 2014)

Let $2 \leq d \leq n$. Then $E_{d,n}^{−\alpha}$ is CM if and only if $\alpha = 0$ or $\alpha \geq \frac{n-d}{2}$. The condition on α is necessary for $E_{d,n}^{−\alpha}$ to be CM!

Theorem (K., Michalek, Sturmfels, 2019)

If $E_{d,n}^{−\alpha}$, $d \geq 2$, is completely monotone, then $\alpha = 0$ or $\alpha \geq \frac{n-d}{2}$.

Proof.
One can write

$E_{d,n}(\bar{x}, x_n)^{−\alpha}$
Bounds on α with CM $E_{d,n}^{-\alpha}$

Conjecture (Scott and Sokal, 2014)

Let $2 \leq d \leq n$. Then $E_{d,n}^{-\alpha}$ is CM if and only if $\alpha = 0$ or $\alpha \geq \frac{n-d}{2}$.

The condition on α is necessary for $E_{d,n}^{-\alpha}$ to be CM!

Theorem (K., Michalek, Sturmfels, 2019)

If $E_{d,n}^{-\alpha}$, $d \geq 2$, is completely monotone, then $\alpha = 0$ or $\alpha \geq \frac{n-d}{2}$.

Proof.

One can write

$$E_{d,n}(\bar{x}, x_n)^{-\alpha} = (x_n E_{d-1,n-1}(\bar{x}) + E_{d,n-1}(\bar{x}))^{-\alpha},$$
Bounds on α with CM $E_{d,n}^{-\alpha}$

Conjecture (Scott and Sokal, 2014)

Let $2 \leq d \leq n$. Then $E_{d,n}^{-\alpha}$ is CM if and only if $\alpha = 0$ or $\alpha \geq \frac{n-d}{2}$.

The condition on α is necessary for $E_{d,n}^{-\alpha}$ to be CM!

Theorem (K., Michalek, Sturmfels, 2019)

If $E_{d,n}^{-\alpha}$, $d \geq 2$, is completely monotone, then $\alpha = 0$ or $\alpha \geq \frac{n-d}{2}$.

Proof.

One can write

$$E_{d,n}(\bar{x}, x_n)^{-\alpha} = (x_n E_{d-1,n-1}(\bar{x}) + E_{d,n-1}(\bar{x}))^{-\alpha}, \quad \bar{x} = (x_1, \ldots, x_{n-1}).$$
Bounds on α with CM $E_{d,n}^{-\alpha}$

Conjecture (Scott and Sokal, 2014)

Let $2 \leq d \leq n$. Then $E_{d,n}^{-\alpha}$ is CM if and only if $\alpha = 0$ or $\alpha \geq \frac{n-d}{2}$. The condition on α is necessary for $E_{d,n}^{-\alpha}$ to be CM!

Theorem (K., Michalek, Sturmfels, 2019)

If $E_{d,n}^{-\alpha}$, $d \geq 2$, is completely monotone, then $\alpha = 0$ or $\alpha \geq \frac{n-d}{2}$.

Proof.

One can write

$$E_{d,n}(\bar{x}, x_n)^{-\alpha} = (x_n E_{d-1,n-1}(\bar{x}) + E_{d,n-1}(\bar{x}))^{-\alpha}, \quad \bar{x} = (x_1, \ldots, x_{n-1}).$$

If $E_{d,n}^{-\alpha}$ is CM,
Bounds on α with CM $E_{d,n}^{-\alpha}$

Conjecture (Scott and Sokal, 2014)
Let $2 \leq d \leq n$. Then $E_{d,n}^{-\alpha}$ is CM if and only if $\alpha = 0$ or $\alpha \geq \frac{n-d}{2}$. The condition on α is necessary for $E_{d,n}^{-\alpha}$ to be CM!

Theorem (K., Michalek, Sturmfels, 2019)
If $E_{d,n}^{-\alpha}$, $d \geq 2$, is completely monotone, then $\alpha = 0$ or $\alpha \geq \frac{n-d}{2}$.

Proof.
One can write

$E_{d,n}(\bar{x}, x_n)^{-\alpha} = (x_nE_{d-1,n-1}(\bar{x}) + E_{d,n-1}(\bar{x}))^{-\alpha}, \bar{x} = (x_1, \ldots, x_{n-1})$.

If $E_{d,n}^{-\alpha}$ is CM, then it’s CM in \bar{x} for any fixed $x_n > 0$.
Bounds on α with CM $E_{d,n}^{-\alpha}$

Conjecture (Scott and Sokal, 2014)

Let $2 \leq d \leq n$. Then $E_{d,n}^{-\alpha}$ is CM if and only if $\alpha = 0$ or $\alpha \geq \frac{n-d}{2}$.

The condition on α is necessary for $E_{d,n}^{-\alpha}$ to be CM!

Theorem (K., Michalek, Sturmfels, 2019)

If $E_{d,n}^{-\alpha}$, $d \geq 2$, is completely monotone, then $\alpha = 0$ or $\alpha \geq \frac{n-d}{2}$.

Proof.

One can write

$$E_{d,n}(\bar{x}, x_n)^{-\alpha} = (x_n E_{d-1,n-1}(\bar{x}) + E_{d,n-1}(\bar{x}))^{-\alpha}, \quad \bar{x} = (x_1, \ldots, x_{n-1}).$$

If $E_{d,n}^{-\alpha}$ is CM, then it’s CM in \bar{x} for any fixed $x_n > 0$. Signs of \bar{x}-derivatives of $E_{d,n}^{-\alpha}$ and of $E_{d-1,n-1}^{-\alpha}$ are the same.
Bounds on α with CM $E_{d,n}^{-\alpha}$

Conjecture (Scott and Sokal, 2014)
Let $2 \leq d \leq n$. Then $E_{d,n}^{-\alpha}$ is CM if and only if $\alpha = 0$ or $\alpha \geq \frac{n-d}{2}$.
The condition on α is necessary for $E_{d,n}^{-\alpha}$ to be CM!

Theorem (K., Michalek, Sturmfels, 2019)
If $E_{d,n}^{-\alpha}$, $d \geq 2$, is completely monotone, then $\alpha = 0$ or $\alpha \geq \frac{n-d}{2}$.

Proof.
One can write

$$E_{d,n}(\bar{x},x_n)^{-\alpha} = (x_nE_{d-1,n-1}(\bar{x})+E_{d,n-1}(\bar{x}))^{-\alpha}, \quad \bar{x} = (x_1, \ldots, x_{n-1}).$$

If $E_{d,n}^{-\alpha}$ is CM, then it’s CM in \bar{x} for any fixed $x_n > 0$. Signs of \bar{x}-derivatives of $E_{d,n}^{-\alpha}$ and of $E_{d-1,n-1}^{-\alpha}$ are the same for sufficiently large $x_n > 0$.
Bounds on α with CM $E_{d,n}^{-\alpha}$

Conjecture (Scott and Sokal, 2014)
Let $2 \leq d \leq n$. Then $E_{d,n}^{-\alpha}$ is CM if and only if $\alpha = 0$ or $\alpha \geq \frac{n-d}{2}$. The condition on α is necessary for $E_{d,n}^{-\alpha}$ to be CM!

Theorem (K., Michalek, Sturmfels, 2019)
If $E_{d,n}^{-\alpha}$, $d \geq 2$, is completely monotone, then $\alpha = 0$ or $\alpha \geq \frac{n-d}{2}$.

Proof.
One can write

$$E_{d,n}^{-\alpha}(\bar{x}, x_n) = (x_n E_{d-1,n-1}(\bar{x}) + E_{d,n-1}(\bar{x}))^{-\alpha}, \bar{x} = (x_1, \ldots, x_{n-1}).$$

If $E_{d,n}^{-\alpha}$ is CM, then it’s CM in \bar{x} for any fixed $x_n > 0$. Signs of \bar{x}-derivatives of $E_{d,n}^{-\alpha}$ and of $E_{d-1,n-1}^{-\alpha}$ are the same for sufficiently large $x_n > 0$. By induction, $\alpha \geq \frac{(n-1)-(d-1)}{2}$.
Bounds on α with CM $E_{d,n}^{-\alpha}$

Conjecture (Scott and Sokal, 2014)
Let $2 \leq d \leq n$. Then $E_{d,n}^{-\alpha}$ is CM if and only if $\alpha = 0$ or $\alpha \geq \frac{n-d}{2}$.
The condition on α is necessary for $E_{d,n}^{-\alpha}$ to be CM!

Theorem (K., Michalek, Sturmfels, 2019)
If $E_{d,n}^{-\alpha}$, $d \geq 2$, is completely monotone, then $\alpha = 0$ or $\alpha \geq \frac{n-d}{2}$.

Proof.
One can write

$$E_{d,n}(\bar{x}, x_n)^{-\alpha} = (x_nE_{d-1,n-1}(\bar{x}) + E_{d,n-1}(\bar{x}))^{-\alpha}, \bar{x} = (x_1, \ldots, x_{n-1}).$$

If $E_{d,n}^{-\alpha}$ is CM, then it’s CM in \bar{x} for any fixed $x_n > 0$. Signs of
\bar{x}-derivatives of $E_{d,n}^{-\alpha}$ and of $E_{d-1,n-1}^{-\alpha}$ are the same for sufficiently
large $x_n > 0$. By induction, $\alpha \geq \frac{(n-1)-(d-1)}{2} = \frac{n-d}{2}$. \qed
Summary on complete monotonicity for inverse powers of stable polynomials

Conjecture (Michalek, Sturmfels, Uhler and Zwiernik, 2015)

Let p be a real homogeneous polynomial that is stable and $p > 0$ on $\mathbb{R}_{>0}^n$. Then there is $\alpha = \alpha(p) > 0$ such that $p^{-\alpha}$ is CM.
Summary on complete monotonicity for inverse powers of stable polynomials

Conjecture (Michalek, Sturmfels, Uhler and Zwiernik, 2015)

Let p be a real homogeneous polynomial that is stable and $p > 0$ on $\mathbb{R}_n^>0$. Then there is $\alpha = \alpha(p) > 0$ such that $p^{-\alpha}$ is CM.

- True for polynomials with determinantal power (in part. for quadratic polynomials) (follows from Scott and Sokal, 2014)
- True for elementary symmetric polynomials (K., Michalek and Sturmfels, 2019)
- Would be enough to prove (or disprove) for multi-affine stable polynomials (follows from Grace–Walsh–Szegö theorem)

Open problem: does some power of E^d, n admit a determinantal representation? (if yes \Rightarrow another proof of CM for $E^{-\alpha}d, n$).
Summary on complete monotonicity for inverse powers of stable polynomials

Conjecture (Michalek, Sturmfels, Uhler and Zwiernik, 2015)

Let p be a real homogeneous polynomial that is stable and $p > 0$ on $\mathbb{R}^n_{>0}$. Then there is $\alpha = \alpha(p) > 0$ such that $p^{-\alpha}$ is CM.

- True for polynomials with determinantal power (in part. for quadratic polynomials) (follows from Scott and Sokal, 2014)
- True for elementary symmetric polynomials (K., Michalek and Sturmfels, 2019)

Open problem: does some power of E_d, n admit a determinantal representation? (if yes \Rightarrow another proof of CM for $E_d^{-\alpha}$, n.)

Summary on complete monotonicity for inverse powers of stable polynomials

Conjecture (Michalek, Sturmfels, Uhler and Zwiernik, 2015)

Let p be a real homogeneous polynomial that is stable and $p > 0$ on $\mathbb{R}_{\geq 0}^n$. Then there is $\alpha = \alpha(p) > 0$ such that $p^{-\alpha}$ is CM.

- True for polynomials with determinantal power (in part. for quadratic polynomials) (follows from Scott and Sokal, 2014)
- True for elementary symmetric polynomials (K., Michalek and Sturmfels, 2019)
- Would be enough to prove (or disprove) for multi-affine stable polynomials (follows from Grace–Walsh–Szegö theorem)
Summary on complete monotonicity for inverse powers of stable polynomials

Conjecture (Michalek, Sturmfels, Uhler and Zwiernik, 2015)

Let p be a real homogeneous polynomial that is stable and $p > 0$ on $\mathbb{R}^n_{>0}$. Then there is $\alpha = \alpha(p) > 0$ such that $p^{-\alpha}$ is CM.

- True for polynomials with determinantal power (in part. for quadratic polynomials) (follows from Scott and Sokal, 2014)
- True for elementary symmetric polynomials (K., Michalek and Sturmfels, 2019)
- Would be enough to prove (or disprove) for multi-affine stable polynomials (follows from Grace–Walsh–Szegö theorem)

Open problem:
Summary on complete monotonicity for inverse powers of stable polynomials

Conjecture (Michalek, Sturmfels, Uhler and Zwiernik, 2015)

Let p be a real homogeneous polynomial that is stable and $p > 0$ on $\mathbb{R}^n_{>0}$. Then there is $\alpha = \alpha(p) > 0$ such that $p^{-\alpha}$ is CM.

- True for polynomials with determinantal power (in part. for quadratic polynomials) (follows from Scott and Sokal, 2014)
- True for elementary symmetric polynomials (K., Michalek and Sturmfels, 2019)
- Would be enough to prove (or disprove) for multi-affine stable polynomials (follows from Grace–Walsh–Szegö theorem)

Open problem: does some power of $E_{d,n}$ admit a determinantal representation?
Summary on complete monotonicity for inverse powers of stable polynomials

Conjecture (Michalek, Sturmfels, Uhler and Zwiernik, 2015)

Let p be a real homogeneous polynomial that is stable and $p > 0$ on $\mathbb{R}^n_{>0}$. Then there is $\alpha = \alpha(p) > 0$ such that $p^{-\alpha}$ is CM.

- True for polynomials with determinantal power (in part. for quadratic polynomials) (follows from Scott and Sokal, 2014)
- True for elementary symmetric polynomials (K., Michalek and Sturmfels, 2019)
- Would be enough to prove (or disprove) for multi-affine stable polynomials (follows from Grace–Walsh–Szegő theorem)

Open problem: does some power of $E_{d,n}$ admit a determinantal representation? (if yes \implies another proof of CM for $E_{d,n}^{-\alpha}$.)
Integral representations of completely monotone functions

Recall that a smooth function $f: \mathbb{R}^n > 0 \rightarrow \mathbb{R} > 0$ is CM if
$$(−1)^k \frac{\partial^k f}{\partial x_{i_1} \ldots \partial x_{i_k}}(x) \geq 0,$$
$x \in \mathbb{R}^n > 0$, for any $k = 0, 1, 2, \ldots$ and any indices $i_1, \ldots, i_k = 1, \ldots, n$. So, it amounts to checking nonnegativity of infinitely many functions!

How to certify complete monotonicity?

Theorem (Bernstein-Hausdorff-Widder-Choquet, 1969)

Let $f: \mathbb{R}^n > 0 \rightarrow \mathbb{R} > 0$ be a smooth function. Then f is CM if and only if there exists a (positive) Borel measure μ whose support is contained in the nonnegative orthant $\mathbb{R}^n \geq 0 = (\mathbb{R}^n > 0)^*$ and such that
$$f(x) = \hat{\mathbb{R}^n \geq 0} e^{-\langle y, x \rangle} d\mu(y), x \in \mathbb{R}^n > 0.$$
Integral representations of completely monotone functions

Recall that a smooth function $f : \mathbb{R}^n_0 \to \mathbb{R}_{>0}$ is CM if

$$(-1)^k \frac{\partial^k f}{\partial x_{i_1} \ldots \partial x_{i_k}}(x) \geq 0, \quad x \in \mathbb{R}^n_{>0},$$
Integral representations of completely monotone functions

Recall that a smooth function $f : \mathbb{R}_0^n \rightarrow \mathbb{R}_0$ is CM if

$$(-1)^k \frac{\partial^k f}{\partial x_{i_1} \ldots \partial x_{i_k}}(x) \geq 0, \quad x \in \mathbb{R}_0^n,$$

for any $k = 0, 1, 2, \ldots$ and any indices $i_1, \ldots, i_k = 1, \ldots, n$.

So, it amounts to checking nonnegativity of infinitely many functions!

How to certify complete monotonicity?

Theorem (Bernstein-Hausdorff-Widder-Choquet, 1969)

Let $f : \mathbb{R}_0^n \rightarrow \mathbb{R}_0$ be a smooth function. Then f is CM if and only if there exists a (positive) Borel measure μ whose support is contained in the nonnegative orthant $\mathbb{R}_n \geq 0 = (\mathbb{R}_0^n)^*$ and such that

$$f(x) = \hat{\mathbb{R}_n \geq 0} e^{-\langle y, x \rangle} d\mu(y), \quad x \in \mathbb{R}_0^n.$$
Integral representations of completely monotone functions

Recall that a smooth function $f : \mathbb{R}^n_0 \to \mathbb{R}_0$ is CM if

$$(−1)^k \frac{\partial^k f}{\partial x_{i_1} \ldots \partial x_{i_k}}(x) \geq 0, \quad x \in \mathbb{R}^n_0,$$

for any $k = 0, 1, 2, \ldots$ and any indices $i_1, \ldots, i_k = 1, \ldots, n$. So, it amounts to checking nonnegativity of **infinitely many** functions!
Integral representations of completely monotone functions

Recall that a smooth function $f : \mathbb{R}^n_{>0} \to \mathbb{R}_{>0}$ is CM if

$$(−1)^k \frac{∂^k f}{∂x_{i_1} \ldots ∂x_{i_k}}(x) \geq 0, \quad x \in \mathbb{R}^n_{>0},$$

for any $k = 0, 1, 2, \ldots$ and any indices $i_1, \ldots, i_k = 1, \ldots, n$. So, it amounts to checking nonnegativity of infinitely many functions!

How to certify complete monotonicity?
Integral representations of completely monotone functions

Recall that a smooth function $f : \mathbb{R}^n_0 \to \mathbb{R}_0$ is CM if

$$(−1)^k \frac{\partial^k f}{\partial x_{i_1} \ldots \partial x_{i_k}}(x) ≥ 0, \quad x \in \mathbb{R}^n_0,$$

for any $k = 0, 1, 2, \ldots$ and any indices $i_1, \ldots, i_k = 1, \ldots, n$. So, it amounts to checking nonnegativity of infinitely many functions!

How to certify complete monotonicity?

Theorem (Bernstein-Hausdorff-Widder-Choquet, 1969)
Integral representations of completely monotone functions

Recall that a smooth function $f : \mathbb{R}^n_+ \to \mathbb{R}_+$ is CM if

$(-1)^k \frac{\partial^k f}{\partial x_{i_1} \ldots \partial x_{i_k}}(x) \geq 0, \quad x \in \mathbb{R}^n_+$

for any $k = 0, 1, 2, \ldots$ and any indices $i_1, \ldots, i_k = 1, \ldots, n$. So, it amounts to checking nonnegativity of infinitely many functions!

How to certify complete monotonicity?

Theorem (Bernstein-Hausdorff-Widder-Choquet, 1969)

Let $f : \mathbb{R}^n_+ \to \mathbb{R}_+$ be a smooth function.
Integral representations of completely monotone functions

Recall that a smooth function $f : \mathbb{R}^n_{>0} \to \mathbb{R}_{>0}$ is CM if

$$(−1)^k \frac{\partial^k f}{\partial x_{i_1} \ldots \partial x_{i_k}}(x) \geq 0, \quad x \in \mathbb{R}^n_{>0},$$

for any $k = 0, 1, 2, \ldots$ and any indices $i_1, \ldots, i_k = 1, \ldots, n$. So, it amounts to checking nonnegativity of infinitely many functions!

How to certify complete monotonicity?

Theorem (Bernstein-Hausdorff-Widder-Choquet, 1969)

Let $f : \mathbb{R}^n_{>0} \to \mathbb{R}_{>0}$ be a smooth function. Then f is CM
Integral representations of completely monotone functions

Recall that a smooth function \(f : \mathbb{R}_+^n \to \mathbb{R}_+ \) is CM if

\[
(-1)^k \frac{\partial^k f}{\partial x_{i_1} \ldots \partial x_{i_k}}(x) \geq 0, \quad x \in \mathbb{R}_+^n,
\]

for any \(k = 0, 1, 2, \ldots \) and any indices \(i_1, \ldots, i_k = 1, \ldots, n \). So, it amounts to checking nonnegativity of infinitely many functions!

How to certify complete monotonicity?

Theorem (Bernstein-Hausdorff-Widder-Choquet, 1969)

Let \(f : \mathbb{R}_+^n \to \mathbb{R}_+ \) be a smooth function. Then \(f \) is CM if and only if there exists a (positive) Borel measure \(\mu \).
Integral representations of completely monotone functions

Recall that a smooth function \(f : \mathbb{R}^n_0 \rightarrow \mathbb{R}_{>0} \) is CM if

\[
(-1)^k \frac{\partial^k f}{\partial x_{i_1} \cdots \partial x_{i_k}}(x) \geq 0, \quad x \in \mathbb{R}^n_0,
\]

for any \(k = 0, 1, 2, \ldots \) and any indices \(i_1, \ldots, i_k = 1, \ldots, n \). So, it amounts to checking nonnegativity of infinitely many functions!

How to certify complete monotonicity?

Theorem (Bernstein-Hausdorff-Widder-Choquet, 1969)

Let \(f : \mathbb{R}^n_0 \rightarrow \mathbb{R}_{>0} \) be a smooth function. Then \(f \) is CM if and only if there exists a (positive) Borel measure \(\mu \) whose support is contained in the nonnegative orthant \(\mathbb{R}^n_{\geq 0} = (\mathbb{R}^n_{>0})^* \)
Integral representations of completely monotone functions

Recall that a smooth function $f : \mathbb{R}^n_> \to \mathbb{R}_>$ is CM if

$(-1)^k \frac{\partial^k f}{\partial x_{i_1} \ldots \partial x_{i_k}}(x) \geq 0, \quad x \in \mathbb{R}^n_>$,

for any $k = 0, 1, 2, \ldots$ and any indices $i_1, \ldots, i_k = 1, \ldots, n$. So, it amounts to checking nonnegativity of infinitely many functions!

How to certify complete monotonicity?

Theorem (Bernstein-Hausdorff-Widder-Choquet, 1969)

Let $f : \mathbb{R}^n_> \to \mathbb{R}_>$ be a smooth function. Then f is CM if and only if there exists a (positive) Borel measure μ whose support is contained in the nonnegative orthant $\mathbb{R}^n_0 = (\mathbb{R}^n_>)^*$ and such that

$$f(x) = \int_{\mathbb{R}^n_0} e^{-\langle y, x \rangle} \, d\mu(y), \quad x \in \mathbb{R}^n_>.$$
Bernstein-Hausdorff-Widder-Choquet characterization

Theorem (Bernstein-Hausdorff-Widder-Choquet, 1969)

Let $f : \mathbb{R}^n_0 \to \mathbb{R}_0^*$ be a smooth function. Then f is CM if and only if there exists a (positive) Borel measure μ whose support is contained in the nonnegative orthant $\mathbb{R}_{\geq 0}^n = (\mathbb{R}_0^n)^*$ and such that

$$f(x) = \int_{\mathbb{R}_{\geq 0}^n} e^{-\langle y, x \rangle} \, d\mu(y), \quad x \in \mathbb{R}_0^n.$$
Bernstein-Hausdorff-Widder-Choquet characterization

Theorem (Bernstein-Hausdorff-Widder-Choquet, 1969)

Let \(f : \mathbb{R}^n_{>0} \to \mathbb{R}_{>0} \) be a smooth function. Then \(f \) is CM if and only if there exists a (positive) Borel measure \(\mu \) whose support is contained in the nonnegative orthant \(\mathbb{R}^n_{\geq 0} = (\mathbb{R}^n_{>0})^* \) and such that

\[
f(x) = \int_{\mathbb{R}^n_{\geq 0}} e^{-\langle y, x \rangle} \, d\mu(y), \quad x \in \mathbb{R}^n_{>0}.
\]

\[
\frac{1}{x} = \int_{\mathbb{R}_{\geq 0}} e^{-y \cdot x} \, dy,
\]
Bernstein-Hausdorff-Widder-Choquet characterization

Theorem (Bernstein-Hausdorff-Widder-Choquet, 1969)

Let \(f : \mathbb{R}_{>0}^n \to \mathbb{R}_{>0} \) be a smooth function. Then \(f \) is CM if and only if there exists a (positive) Borel measure \(\mu \) whose support is contained in the nonnegative orthant \(\mathbb{R}_{\geq 0}^n = (\mathbb{R}_{>0}^n)^* \) and such that

\[
f(x) = \int_{\mathbb{R}_{\geq 0}^n} e^{-\langle y, x \rangle} d\mu(y), \quad x \in \mathbb{R}_{>0}^n.
\]

\[
\frac{1}{x} = \int_{\mathbb{R}_{\geq 0}} e^{-y \cdot x} dy,
\]

\[
e^{-x} = \int_{\mathbb{R}_{\geq 0}} e^{-y \cdot x} d\delta_1(y),
\]
Bernstein-Hausdorff-Widder-Choquet characterization

Theorem (Bernstein-Hausdorff-Widder-Choquet, 1969)

Let \(f : \mathbb{R}^n_0 \to \mathbb{R}_0^0 \) be a smooth function. Then \(f \) is CM if and only if there exists a (positive) Borel measure \(\mu \) whose support is contained in the nonnegative orthant \(\mathbb{R}^n_{\geq 0} = (\mathbb{R}^n_0)^* \) and such that

\[
f(x) = \int_{\mathbb{R}^n_{\geq 0}} e^{-\langle y, x \rangle} \, d\mu(y), \quad x \in \mathbb{R}^n_0.
\]

\[\frac{1}{x} = \int_{\mathbb{R}_{\geq 0}} e^{-y \cdot x} \, dy,\]

\[e^{-x} = \int_{\mathbb{R}_{\geq 0}} e^{-y \cdot x} \, d\delta_1(y), \quad \delta_1 \text{ is the Dirac measure at } y = 1\]
GOAL: understand the integral representation

\[f(x) = \hat{R} \geq 0 e^{-\langle y, x \rangle} d\mu(y), \quad x \in R^n \geq 0. \]

for CM function \(f = p - \alpha \), where \(p \) is a product of linear forms.

Note that for any \(\alpha \geq 0 \) the function \(x - \alpha, x > 0 \) is CM

\[x \alpha = \hat{R} \geq 0 e^{-y \cdot x} y \alpha - 1 \Gamma(\alpha) \ldots \Gamma(d) dy \]

(definition of the Gamma function)

Thus, for any \(\alpha_k \geq 0 \) the function \(x - \alpha_1 \ldots x - \alpha_d \) is CM

\[x - \alpha_1 \ldots x - \alpha_d = \hat{R} \geq 0 e^{-\langle y, x \rangle} y \alpha_1 - 1 \Gamma(\alpha_1) \ldots \Gamma(\alpha_d) dy \]

(Fubini's theorem)
Products of linear forms

GOAL: understand the integral representation

\[f(x) = \int_{\mathbb{R}^n_{\geq 0}} e^{-\langle y, x \rangle} \, d\mu(y), \quad x \in \mathbb{R}^n_{\geq 0}. \]
Products of linear forms

GOAL: understand the integral representation

\[f(x) = \int_{\mathbb{R}^n_{\geq 0}} e^{-\langle y, x \rangle} \, d\mu(y), \quad x \in \mathbb{R}^n_{\geq 0}. \]

for CM function \(f = p^{-\alpha} \),
GOAL: understand the integral representation

\[f(x) = \int_{\mathbb{R}^n_{\geq 0}} e^{-\langle y, x \rangle} \, d\mu(y), \quad x \in \mathbb{R}^n_{\geq 0}. \]

for CM function \(f = p^{-\alpha} \), \(p \) is a product of linear forms.
Products of linear forms

GOAL: understand the integral representation

\[f(x) = \int_{\mathbb{R}^n_{\geq 0}} e^{-\langle y, x \rangle} \, d\mu(y), \quad x \in \mathbb{R}^n_{\geq 0}. \]

for CM function \(f = p^{-\alpha}, \) \(p \) is a product of linear forms.
Products of linear forms

GOAL: understand the integral representation

\[f(x) = \int_{\mathbb{R}_0^n} e^{-\langle y, x \rangle} d\mu(y), \quad x \in \mathbb{R}_0^n. \]

for CM function \(f = p^{-\alpha}, \) \(p \) is a product of linear forms.

Note that for any \(\alpha \geq 0 \) the function \(x^{-\alpha}, x > 0, \) is CM
Products of linear forms

GOAL: understand the integral representation

\[f(x) = \int_{\mathbb{R}_0^n} e^{-\langle y, x \rangle} d\mu(y), \quad x \in \mathbb{R}_0^n. \]

for CM function \(f = p^{-\alpha}, \) \(p \) is a product of linear forms.

Note that for any \(\alpha \geq 0 \) the function \(x^{-\alpha}, x > 0, \) is CM and

\[
\frac{1}{x^\alpha} = \int_{\mathbb{R}_{\geq 0}} e^{-y \cdot x} \frac{y^{\alpha-1}}{\Gamma(\alpha)} dy \underbrace{\quad d\mu(y)}_{\text{(Fubini's theorem)}}
\]
Products of linear forms

GOAL: understand the integral representation

\[f(x) = \int_{\mathbb{R}^n_{\geq 0}} e^{-\langle y, x \rangle} \, d\mu(y), \quad x \in \mathbb{R}^n_{\geq 0}. \]

for CM function \(f = p^{-\alpha} \), \(p \) is a product of linear forms.

Note that for any \(\alpha \geq 0 \) the function \(x^{-\alpha}, x > 0 \), is CM and

\[
\frac{1}{x^\alpha} = \int_{\mathbb{R}_{\geq 0}} e^{-y \cdot x} \frac{y^{\alpha-1}}{\Gamma(\alpha)} \, dy \quad \text{(definition of the Gamma function)}
\]
Products of linear forms

GOAL: understand the integral representation

\[f(x) = \int_{\mathbb{R}^n_{\geq 0}} e^{-\langle y, x \rangle} \, d\mu(y), \quad x \in \mathbb{R}^n_{\geq 0}. \]

for CM function \(f = p^{-\alpha} \), \(p \) is a product of linear forms.

Note that for any \(\alpha \geq 0 \) the function \(x^{-\alpha}, \, x > 0 \), is CM and

\[
\frac{1}{x^\alpha} = \int_{\mathbb{R}_{\geq 0}} e^{-y \cdot x} \frac{y^{\alpha-1}}{\Gamma(\alpha)} \, dy \quad \text{(definition of the Gamma function)}
\]

Thus, for any \(\alpha_k \geq 0 \)
GOAL: understand the integral representation

\[f(x) = \int_{\mathbb{R}^n_\geq} e^{-\langle y, x \rangle} \, d\mu(y), \quad x \in \mathbb{R}^n_\geq. \]

for CM function \(f = p^{-\alpha} \), \(p \) is a product of linear forms.

Note that for any \(\alpha \geq 0 \) the function \(x^{-\alpha}, x > 0 \), is CM and

\[
\frac{1}{x^\alpha} = \int_{\mathbb{R}_\geq} e^{-y \cdot x} \, \frac{y^{\alpha-1}}{\Gamma(\alpha)} \, dy \quad \text{(definition of the Gamma function)}
\]

Thus, for any \(\alpha_k \geq 0 \) the function \(x_1^{-\alpha_1} \ldots x_d^{-\alpha_d} \) is CM.
Products of linear forms

GOAL: understand the integral representation

\[f(x) = \int_{\mathbb{R}_{\geq 0}^n} e^{-\langle y, x \rangle} \, d\mu(y), \quad x \in \mathbb{R}_{\geq 0}^n. \]

for CM function \(f = p^{-\alpha}, \ p \) is a product of linear forms.

Note that for any \(\alpha \geq 0 \) the function \(x^{-\alpha}, \ x > 0, \) is CM and

\[
\frac{1}{x^\alpha} = \int_{\mathbb{R}_{\geq 0}^d} e^{-y \cdot x} \frac{y^{\alpha-1}}{\Gamma(\alpha)} \, dy \tag{definition of the Gamma function}
\]

Thus, for any \(\alpha_k \geq 0 \) the function \(x_1^{-\alpha_1} \ldots x_d^{-\alpha_d} \) is CM and

\[
x_1^{-\alpha_1} \ldots x_d^{-\alpha_d} = \int_{\mathbb{R}_{\geq 0}^d} e^{-\langle y, x \rangle} \frac{y_1^{\alpha_1-1} \ldots y_d^{\alpha_d-1}}{\Gamma(\alpha_1) \ldots \Gamma(\alpha_d)} \, dy \tag{Fubini's theorem}
\]
Products of linear forms

GOAL: understand the integral representation

\[
f(x) = \int_{\mathbb{R}^n_{\geq 0}} e^{-\langle y, x \rangle} \, d\mu(y), \quad x \in \mathbb{R}^n_{\geq 0}.
\]

for CM function \(f = p^{-\alpha} \), \(p \) is a product of linear forms.

Note that for any \(\alpha \geq 0 \) the function \(x^{-\alpha}, \ x > 0, \) is CM and

\[
\frac{1}{x^\alpha} = \int_{\mathbb{R}_{\geq 0}} e^{-y \cdot x} \, \frac{y^{\alpha - 1}}{\Gamma(\alpha)} \, dy \quad \text{(definition of the Gamma function)}
\]

Thus, for any \(\alpha_k \geq 0 \) the function \(x_1^{-\alpha_1} \ldots x_d^{-\alpha_d} \) is CM and

\[
x_1^{-\alpha_1} \ldots x_d^{-\alpha_d} = \int_{\mathbb{R}^d_{\geq 0}} e^{-\langle y, x \rangle} \, \frac{y_1^{\alpha_1 - 1} \ldots y_d^{\alpha_d - 1}}{\Gamma(\alpha_1) \ldots \Gamma(\alpha_d)} \, dy \quad \text{(Fubini’s theorem)}
\]
Products of linear forms

\[x_1^{-\alpha_1} \cdots x_d^{-\alpha_d} = \int_{\mathbb{R}^d_{\geq 0}} e^{-\langle y, x \rangle} \frac{y_1^{\alpha_1-1} \cdots y_d^{\alpha_d-1}}{\Gamma(\alpha_1) \cdots \Gamma(\alpha_d)} \, dy \]
Products of linear forms

\[x_1^{-\alpha_1} \cdots x_d^{-\alpha_d} = \int_{\mathbb{R}^d_{\geq 0}} e^{-\langle y, x \rangle} \frac{y_1^{\alpha_1-1} \cdots y_d^{\alpha_d-1}}{\Gamma(\alpha_1) \cdots \Gamma(\alpha_d)} \, dy \]

If \(\ell_k = \langle y_k, \cdot \rangle \), \(y_k \in \mathbb{R}^n_{\geq 0} \), are (stable) linear forms,
Products of linear forms

\[
x_1^{-\alpha_1} \cdots x_d^{-\alpha_d} = \int_{\mathbb{R}^d_\geq 0} e^{-\langle y, x \rangle} \frac{y_1^{\alpha_1-1} \cdots y_d^{\alpha_d-1}}{\Gamma(\alpha_1) \cdots \Gamma(\alpha_d)} \, dy
\]

If \(\ell_k = \langle y_k, \cdot \rangle \), \(y_k \in \mathbb{R}^n_{\geq 0} \), are (stable) linear forms, then \(\ell_1^{-\alpha_1} \cdots \ell_d^{-\alpha_d} \) is CM for any \(\alpha_k \geq 0 \).
Products of linear forms

\[x_1^{-\alpha_1} \ldots x_d^{-\alpha_d} = \int_{\mathbb{R}^d_\geq 0} e^{-\langle y, x \rangle} \frac{y_1^{\alpha_1-1} \cdots y_d^{\alpha_d-1}}{\Gamma(\alpha_1) \cdots \Gamma(\alpha_d)} \, dy \]

If \(\ell_k = \langle y_k, \cdot \rangle, y_k \in \mathbb{R}^n_\geq 0 \), are (stable) linear forms, then \(\ell_1^{-\alpha_1} \ldots \ell_d^{-\alpha_d} \) is CM for any \(\alpha_k \geq 0 \) and

\[\ell_1^{-\alpha_1} \ldots \ell_d^{-\alpha_d} = \int_{\mathbb{R}^n_\geq 0} e^{-\langle y, x \rangle} \, d\mu(y). \]
Products of linear forms

\[x_1^{-\alpha_1} \cdots x_d^{-\alpha_d} = \int_{\mathbb{R}^d_{\geq 0}} e^{-\langle y, x \rangle} \frac{y_1^{\alpha_1-1} \cdots y_d^{\alpha_d-1}}{\Gamma(\alpha_1) \cdots \Gamma(\alpha_d)} \, dy \]

If \(\ell_k = \langle y_k, \cdot \rangle \), \(y_k \in \mathbb{R}^n_{\geq 0} \), are (stable) linear forms, then \(\ell_1^{-\alpha_1} \cdots \ell_d^{-\alpha_d} \) is CM for any \(\alpha_k \geq 0 \) and

\[\ell_1^{-\alpha_1} \cdots \ell_d^{-\alpha_d} = \int_{\mathbb{R}^n_{\geq 0}} e^{-\langle y, x \rangle} \, d\mu(y). \]

\(\mu \) is the push-forward measure of
Products of linear forms

\[x_1^{-\alpha_1} \ldots x_d^{-\alpha_d} = \int_{\mathbb{R}^d_{\geq 0}} e^{-\langle y, x \rangle} \frac{y_1^{\alpha_1 - 1} \ldots y_d^{\alpha_d - 1}}{\Gamma(\alpha_1) \ldots \Gamma(\alpha_d)} \, dy \]

If \(\ell_k = \langle y_k, \cdot \rangle, y_k \in \mathbb{R}_{\geq 0}^n \), are (stable) linear forms, then \(\ell_1^{-\alpha_1} \ldots \ell_d^{-\alpha_d} \) is CM for any \(\alpha_k \geq 0 \) and

\[\ell_1^{-\alpha_1} \ldots \ell_d^{-\alpha_d} = \int_{\mathbb{R}^n_{\geq 0}} e^{-\langle z, x \rangle} \, d\mu(z). \]

\(\mu \) is the push-forward measure of \(\frac{y_1^{\alpha_1 - 1} \ldots y_d^{\alpha_d - 1}}{\Gamma(\alpha_1) \ldots \Gamma(\alpha_d)} \, dy \)
Products of linear forms

\[x_1^{-\alpha_1} \ldots x_d^{-\alpha_d} = \int_{\mathbb{R}_d^d \geq 0} e^{-\langle y, x \rangle} \frac{y_1^{\alpha_1-1} \ldots y_d^{\alpha_d-1}}{\Gamma(\alpha_1) \ldots \Gamma(\alpha_d)} \, dy \]

If \(\ell_k = \langle y_k, \cdot \rangle, y_k \in \mathbb{R}^n_{\geq 0} \), are (stable) linear forms, then \(\ell_1^{-\alpha_1} \ldots \ell_d^{-\alpha_d} \) is CM for any \(\alpha_k \geq 0 \) and

\[\ell_1^{-\alpha_1} \ldots \ell_d^{-\alpha_d} = \int_{\mathbb{R}_n^d \geq 0} e^{-\langle z, x \rangle} \, d\mu(z). \]

\(\mu \) is the push-forward measure of \(\frac{y_1^{\alpha_1-1} \ldots y_d^{\alpha_d-1}}{\Gamma(\alpha_1) \ldots \Gamma(\alpha_d)} \, dy \) by the linear map

\[
\begin{pmatrix}
| & \cdots & | \\
y_1 & \cdots & y_d \\
| & \cdots & |
\end{pmatrix} : \mathbb{R}_{\geq 0}^d \to \mathbb{R}_{\geq 0}^n
\[
\ell^{-\alpha_1} \ldots \ell^{-\alpha_d} = \int_{\mathbb{R}^n_{\geq 0}} e^{-\langle z, x \rangle} \, d\mu(z), \quad \ell_k = \langle y_k, \cdot \rangle, \ y_k \in \mathbb{R}^n_{\geq 0}.
\]

\(\mu\) is the push-forward measure of \(\frac{y_1^{\alpha_1-1} \ldots y_d^{\alpha_d-1}}{\Gamma(\alpha_1) \ldots \Gamma(\alpha_d)} \, dy\) by the linear map

\[
L = \begin{pmatrix}
| & \ldots & |

y_1 & \ldots & y_d

| & \ldots & |
\end{pmatrix} : \mathbb{R}^d_{\geq 0} \to \mathbb{R}^n_{\geq 0}
\]
\[\ell_1^{-\alpha_1} \ldots \ell_d^{-\alpha_d} = \int_{\mathbb{R}^n_{\geq 0}} e^{-\langle z, x \rangle} \, d\mu(z), \quad \ell_k = \langle y_k, \cdot \rangle, \quad y_k \in \mathbb{R}^n_{\geq 0}. \]

\(\mu \) is the push-forward measure of \(\frac{y_1^{\alpha_1-1} \ldots y_d^{\alpha_d-1}}{\Gamma(\alpha_1) \ldots \Gamma(\alpha_d)} \, dy \) by the linear map

\[
L = \begin{pmatrix}
| & \cdots & |
n1 \cdots y_d
| & \cdots & |
\end{pmatrix} : \mathbb{R}^d_{\geq 0} \to \mathbb{R}^n_{\geq 0}
\]

- The measure \(\mu \) is supported on the polyhedral cone

\[
C := \text{im}(L) = \mathbb{R}_{\geq 0} \cdot y_1 + \cdots + \mathbb{R}_{\geq 0} \cdot y_d \subset \mathbb{R}^n_{\geq 0}
\]
\[
\ell_1^{-\alpha_1} \ldots \ell_d^{-\alpha_d} = \int_{\mathbb{R}_{\geq 0}^n} e^{-\langle z, x \rangle} \, d\mu(z), \quad \ell_k = \langle y_k, \cdot \rangle, \ y_k \in \mathbb{R}_{\geq 0}^n.
\]

\(\mu\) is the push-forward measure of \(\frac{y_1^{\alpha_1-1} \ldots y_d^{\alpha_d-1}}{\Gamma(\alpha_1) \ldots \Gamma(\alpha_d)} \, dy\) by the linear map

\[
L = \begin{pmatrix} y_1 & \cdots & y_d \\ \vdots & \ddots & \vdots \\ \vdots & \cdots & \vdots \end{pmatrix} : \mathbb{R}_{\geq 0}^d \to \mathbb{R}_{\geq 0}^n
\]

- The measure \(\mu\) is supported on the polyhedral cone

\[
C := \text{im}(L) = \mathbb{R}_{\geq 0} \cdot y_1 + \cdots + \mathbb{R}_{\geq 0} \cdot y_d \subset \mathbb{R}_{\geq 0}^n
\]

- If \(y_k\) span \(\mathbb{R}^n\),
\[\ell_1^{-\alpha_1} \cdots \ell_d^{-\alpha_d} = \int_{\mathbb{R}^n_{\geq 0}} e^{-\langle z, x \rangle} \, d\mu(z), \quad \ell_k = \langle y_k, \cdot \rangle, \quad y_k \in \mathbb{R}^n_{\geq 0}. \]

\(\mu \) is the push-forward measure of \(\frac{y_1^{\alpha_1-1} \cdots y_d^{\alpha_d-1}}{\Gamma(\alpha_1) \cdots \Gamma(\alpha_d)} \, dy \) by the linear map

\[
L = \begin{pmatrix}
| & \cdots & | \\
y_1 & \cdots & y_d \\
| & \cdots & |
\end{pmatrix} : \mathbb{R}^d_{\geq 0} \rightarrow \mathbb{R}^n_{\geq 0}
\]

- The measure \(\mu \) is supported on the polyhedral cone

\[C := \text{im}(L) = \mathbb{R}_{\geq 0} \cdot y_1 + \cdots + \mathbb{R}_{\geq 0} \cdot y_d \subset \mathbb{R}^n_{\geq 0} \]

- If \(y_k \) span \(\mathbb{R}^n \), then \(d\mu(z) = q(z) \, dz \),
\[\ell_1^{-\alpha_1} \ldots \ell_d^{-\alpha_d} = \int_{\mathbb{R}_{\geq 0}^n} e^{-\langle z, x \rangle} \, d\mu(z), \quad \ell_k = \langle y_k, \cdot \rangle, \ y_k \in \mathbb{R}_\geq^n. \]

\(\mu \) is the push-forward measure of
\[\frac{y_1^{\alpha_1-1} \ldots y_d^{\alpha_d-1}}{\Gamma(\alpha_1) \ldots \Gamma(\alpha_d)} \, dy \]
by the linear map
\[L = \begin{pmatrix} \mid & \ldots & \mid \\ y_1 & \ldots & y_d \\ \mid & \ldots & \mid \end{pmatrix} : \mathbb{R}_{\geq 0}^d \rightarrow \mathbb{R}_{\geq 0}^n \]

- The measure \(\mu \) is supported on the polyhedral cone
\[C := \text{im}(L) = \mathbb{R}_{\geq 0} \cdot y_1 + \cdots + \mathbb{R}_{\geq 0} \cdot y_d \subset \mathbb{R}_\geq^n \]
- If \(y_k \) span \(\mathbb{R}^n \), then
\[d\mu(z) = q(z) \, dz, \]
where
\[q(z) = \frac{1}{|L|} \int_{L^{-1}(z) \cap \mathbb{R}_{\geq 0}^d} \frac{y_1^{\alpha_1-1} \ldots y_d^{\alpha_d-1}}{\Gamma(\alpha_1) \ldots \Gamma(\alpha_d)} \, dy, \]
\[
\ell_1^{-\alpha_1} \ldots \ell_d^{-\alpha_d} = \int_{\mathbb{R}_{\geq 0}^n} e^{-\langle z, x \rangle} \, d\mu(z), \quad \ell_k = \langle y_k, \cdot \rangle, \; y_k \in \mathbb{R}_{\geq 0}^n.
\]

\(\mu\) is the push-forward measure of \(\frac{y_1^{\alpha_1-1} \cdots y_d^{\alpha_d-1}}{\Gamma(\alpha_1) \cdots \Gamma(\alpha_d)} \, dy\) by the linear map

\[
L = \begin{pmatrix}
 y_1 & \cdots & y_d
 \end{pmatrix} : \mathbb{R}_{\geq 0}^d \to \mathbb{R}_{\geq 0}^n
\]

- The measure \(\mu\) is supported on the polyhedral cone

\[
C := \text{im}(L) = \mathbb{R}_{\geq 0} \cdot y_1 + \cdots + \mathbb{R}_{\geq 0} \cdot y_d \subset \mathbb{R}_{\geq 0}^n
\]

- If \(y_k\) span \(\mathbb{R}^n\), then \(d\mu(z) = q(z) \, dz\), where

\[
q(z) = \frac{1}{|L|} \int_{L^{-1}(z) \cap \mathbb{R}_{\geq 0}^d} \frac{y_1^{\alpha_1-1} \cdots y_d^{\alpha_d-1}}{\Gamma(\alpha_1) \cdots \Gamma(\alpha_d)} \, dy, \quad z \in C.
\]
\begin{align*}
\ell_1^{\alpha_1} \cdots \ell_d^{\alpha_d} &= \int_{\mathbb{R}^n_{\geq 0}} e^{-\langle z, x \rangle} \, d\mu(z), \quad \ell_k = \langle y_k, \cdot \rangle, \quad y_k \in \mathbb{R}^n_{\geq 0}.
\end{align*}

\mu \text{ is the push-forward measure of } \frac{y_1^{\alpha_1-1} \cdots y_d^{\alpha_d-1}}{\Gamma(\alpha_1) \cdots \Gamma(\alpha_d)} \, dy \text{ by the linear map }
\begin{align*}
L &= \begin{pmatrix} y_1 & \cdots & y_d \\ \vdots & \ddots & \vdots \\ y_1 & \cdots & y_d \\ \vdots & \ddots & \vdots \\
\end{pmatrix} : \mathbb{R}^d_{\geq 0} \to \mathbb{R}^n_{\geq 0}
\end{align*}

• The measure \(\mu \) is supported on the polyhedral cone
\begin{align*}
C := \text{im}(L) &= \mathbb{R}_{\geq 0} \cdot y_1 + \cdots + \mathbb{R}_{\geq 0} \cdot y_d \subset \mathbb{R}^n_{\geq 0}
\end{align*}

• If \(y_k \) span \(\mathbb{R}^n \), then \(d\mu(z) = q(z) \, dz \), where
\begin{align*}
q(z) &= \frac{1}{|L|} \int_{L^{-1}(z) \cap \mathbb{R}^d_{\geq 0}} \frac{y_1^{\alpha_1-1} \cdots y_d^{\alpha_d-1}}{\Gamma(\alpha_1) \cdots \Gamma(\alpha_d)} \, dy, \quad z \in C.
\end{align*}

\begin{align*}
|L| &= \sqrt{\det(LL^t)}
\end{align*}
\[\ell_1^{-\alpha_1} \ldots \ell_d^{-\alpha_d} = \int_{\mathbb{R}^n_{\geq 0}} e^{-\langle z, x \rangle} \, d\mu(z), \quad \ell_k = \langle y_k, \cdot \rangle, \; y_k \in \mathbb{R}^n_{\geq 0}. \]

\(\mu \) is the push-forward measure of \(\frac{y_1^{\alpha_1-1} \ldots y_d^{\alpha_d-1}}{\Gamma(\alpha_1) \ldots \Gamma(\alpha_d)} \, dy \) by the linear map

\[L = \begin{pmatrix} \vdots & \vdots & \vdots \\ y_1 & \ldots & y_d \end{pmatrix} : \mathbb{R}^d_{\geq 0} \to \mathbb{R}^n_{\geq 0} \]

- The measure \(\mu \) is supported on the polyhedral cone

\[C := \text{im}(L) = \mathbb{R}^n_{\geq 0} \cdot y_1 + \cdots + \mathbb{R}^n_{\geq 0} \cdot y_d \subset \mathbb{R}^n_{\geq 0} \]

- If \(y_k \) span \(\mathbb{R}^n \), then \(d\mu(z) = q(z) \, dz \), where

\[q(z) = \frac{1}{|L|} \int_{L^{-1}(z) \cap \mathbb{R}^d_{\geq 0}} \frac{y_1^{\alpha_1-1} \ldots y_d^{\alpha_d-1}}{\Gamma(\alpha_1) \ldots \Gamma(\alpha_d)} \, dy, \quad z \in C. \]

\[|L| = \sqrt{\det(LL^t)} \] and \(dy \) is the Lebesgue measure on \(L^{-1}(z) \).
The chamber complex of a polyhedral cone $C = \mathbb{R}_{\geq 0} \cdot y_1 + \cdots + \mathbb{R}_{\geq 0} \cdot y_d \subset \mathbb{R}^n$, is the common refinement of all cones spanned by linearly independent subsets of \{y_1, \ldots, y_d\}.

Example: pentagonal cone and its chamber complex
Chamber complex

The chamber complex of a polyhedral cone
Chamber complex

The chamber complex of a polyhedral cone

\[C = \mathbb{R}_{\geq 0} \cdot y_1 + \cdots + \mathbb{R}_{\geq 0} \cdot y_d \subset \mathbb{R}^n, \]
Chamber complex

The chamber complex of a polyhedral cone

\[C = \mathbb{R}_{\geq 0} \cdot y_1 + \cdots + \mathbb{R}_{\geq 0} \cdot y_d \subset \mathbb{R}^n, \]

is the common refinement of all cones spanned by linearly independent subsets of \(\{y_1, \ldots, y_d\} \).
Chamber complex

The chamber complex of a polyhedral cone

\[C = \mathbb{R}_{\geq 0} \cdot y_1 + \cdots + \mathbb{R}_{\geq 0} \cdot y_d \subset \mathbb{R}^n, \]

is the common refinement of all cones spanned by linearly independent subsets of \(\{y_1, \ldots, y_d\} \).

Example: pentagonal cone and its chamber complex
Volume function

\[\ell^{\alpha_1} \cdots \ell^{\alpha_d} = \hat{C} e^{-\langle z, x \rangle} q(z) dz, \quad \ell_k = \langle y_k, \cdot \rangle, \quad y_k \in \mathbb{R}^n \geq 0. \]

\[q(z) = |L| \hat{L} - 1(z) \cap \mathbb{R}^d \geq 0 y^{\alpha_1 - 1} \cdots y^{\alpha_d - 1} \Gamma(\alpha_1) \cdots \Gamma(\alpha_d) dy, \quad z \in C = \sum_{k=1}^{d} R \cdot y_k. \]

Theorem (K., Michalek and Sturmfels, 2019)

If \(\alpha_k > 0 \) are integers, then \(q(z), \quad z \in C, \) is a piecewise polynomial function that is differentiable of order \(\sum_{k=1}^{d} \alpha_k - n - 1. \) It is polynomial on each cone in the chamber complex of \(C. \)

If \(\alpha_1 = \cdots = \alpha_d = 1, \) the function \(q(z) \) measures the volume of the \((d - n) \)-dimensional polytope \(L - 1(z) \cap \mathbb{R}^d \geq 0. \)
Volume function

\[\ell_1^{-\alpha_1} \cdots \ell_d^{-\alpha_d} = \int_C e^{-\langle z, x \rangle} q(z) \, dz, \quad \ell_k = \langle y_k, \cdot \rangle, \quad y_k \in \mathbb{R}^n_{\geq 0}. \]
Volume function

\[\ell_1^{-\alpha_1} \cdots \ell_d^{-\alpha_d} = \int_C e^{-\langle z, x \rangle} q(z) \, dz, \quad \ell_k = \langle y_k, \cdot \rangle, \quad y_k \in \mathbb{R}_{\geq 0}^n. \]

\[q(z) = \frac{1}{|L|} \int_{L^{-1}(z) \cap \mathbb{R}^d_{\geq 0}} \frac{y_1^{\alpha_1-1} \cdots y_d^{\alpha_d-1}}{\Gamma(\alpha_1) \cdots \Gamma(\alpha_d)} \, dy, \]
Volume function

\[\ell_1^{-\alpha_1} \cdots \ell_d^{-\alpha_d} = \int_C e^{-\langle z, x \rangle} q(z) \, dz, \quad \ell_k = \langle y_k, \cdot \rangle, \ y_k \in \mathbb{R}_{\geq 0}^n. \]

\[q(z) = \frac{1}{|L|} \int_{L^{-1}(z) \cap \mathbb{R}_{\geq 0}^d} y_1^{\alpha_1-1} \cdots y_d^{\alpha_d-1} dy, \ z \in C = \sum_{k=1}^d \mathbb{R}_{\geq 0} \cdot y_k. \]
Volume function

\[
\ell_1^{-\alpha_1} \cdots \ell_d^{-\alpha_d} = \int_C e^{-\langle z, x \rangle} q(z) \, dz, \quad \ell_k = \langle y_k, \cdot \rangle, \quad y_k \in \mathbb{R}^n_{\geq 0}.
\]

\[
q(z) = \frac{1}{|L|} \int_{L^{-1}(z) \cap \mathbb{R}^d_{\geq 0}} \frac{y_1^{\alpha_1-1} \cdots y_d^{\alpha_d-1}}{\Gamma(\alpha_1) \cdots \Gamma(\alpha_d)} \, dy, \quad z \in C = \sum_{k=1}^d \mathbb{R}_{\geq 0} \cdot y_k.
\]

Theorem (K., Michalek and Sturmfels, 2019)

If \(\alpha_k > 0 \) are integers,
Volume function

\[\ell_1^{-\alpha_1} \ldots \ell_d^{-\alpha_d} = \int_C e^{-\langle z, x \rangle} q(z) \, dz, \quad \ell_k = \langle y_k, \cdot \rangle, \quad y_k \in \mathbb{R}_{\geq 0}^n. \]

\[q(z) = \frac{1}{|L|} \int_{L^{-1}(z) \cap \mathbb{R}_{\geq 0}^d} \frac{y_1^{\alpha_1-1} \cdots y_d^{\alpha_d-1}}{\Gamma(\alpha_1) \cdots \Gamma(\alpha_d)} \, dy, \quad z \in C = \sum_{k=1}^d \mathbb{R}_{\geq 0} \cdot y_k. \]

Theorem (K., Michalek and Sturmfels, 2019)

If \(\alpha_k > 0 \) are integers, then \(q(z), z \in C, \)
Volume function

\[\ell_1^{-\alpha_1} \cdots \ell_d^{-\alpha_d} = \int_C e^{-\langle z, x \rangle} q(z) \, dz, \quad \ell_k = \langle y_k, \cdot \rangle, \quad y_k \in \mathbb{R}_{\geq 0}^n. \]

\[q(z) = \frac{1}{|L|} \int_{L^{-1}(z) \cap \mathbb{R}_{\geq 0}^d} \frac{y_1^{\alpha_1 - 1} \cdots y_d^{\alpha_d - 1}}{\Gamma(\alpha_1) \cdots \Gamma(\alpha_d)} \, dy, \quad z \in C = \sum_{k=1}^d \mathbb{R}_{\geq 0} \cdot y_k. \]

Theorem (K., Michalek and Sturmfels, 2019)

If \(\alpha_k > 0 \) are integers, then \(q(z), \ z \in C, \) is a piecewise polynomial function.
Volume function

\[
\ell_1^{-\alpha_1} \cdots \ell_d^{-\alpha_d} = \int_C e^{-\langle z, x \rangle} q(z) \, dz,
\]

\[
\ell_k = \langle y_k, \cdot \rangle, \quad y_k \in \mathbb{R}^n_{\geq 0}.
\]

\[
q(z) = \frac{1}{|L|} \int_{L^{-1}(z) \cap \mathbb{R}^d_{\geq 0}} \frac{y_1^{\alpha_1-1} \cdots y_d^{\alpha_d-1}}{\Gamma(\alpha_1) \cdots \Gamma(\alpha_d)} \, dy, \quad z \in C = \sum_{k=1}^d \mathbb{R}_{\geq 0} \cdot y_k.
\]

Theorem (K., Michalek and Sturmfels, 2019)

If \(\alpha_k > 0 \) are integers, then \(q(z), z \in C \), is a piecewise polynomial function that is differentiable of order \(\sum_{k=1}^d \alpha_k - n - 1 \).
Volume function

\[\ell_1^{\alpha_1} \cdots \ell_d^{\alpha_d} = \int_C e^{-\langle z, x \rangle} q(z) \, dz, \quad \ell_k = \langle y_k, \cdot \rangle, \quad y_k \in \mathbb{R}^n_\geq. \]

\[q(z) = \frac{1}{|L|} \int_{L^{-1}(z) \cap \mathbb{R}^d_\geq} \frac{y_1^{\alpha_1-1} \cdots y_d^{\alpha_d-1}}{\Gamma(\alpha_1) \cdots \Gamma(\alpha_d)} \, dy, \quad z \in C = \sum_{k=1}^d \mathbb{R}^d_\geq \cdot y_k. \]

Theorem (K., Michalek and Sturmfels, 2019)

If \(\alpha_k > 0 \) are integers, then \(q(z) \), \(z \in C \), is a piecewise polynomial function that is differentiable of order \(\sum_{k=1}^d \alpha_k - n - 1 \). It is polynomial on each cone in the chamber complex of \(C \).
Volume function

\[\ell_1^{-\alpha_1} \cdots \ell_d^{-\alpha_d} = \int_C e^{-\langle z, x \rangle} q(z) \, dz, \quad \ell_k = \langle y_k, \cdot \rangle, \quad y_k \in \mathbb{R}_{\geq 0}^n. \]

\[q(z) = \frac{1}{|L|} \int_{L^{-1}(z) \cap \mathbb{R}_{\geq 0}^d} \frac{y_1^{\alpha_1-1} \cdots y_d^{\alpha_d-1}}{\Gamma(\alpha_1) \cdots \Gamma(\alpha_d)} \, dy, \quad z \in C = \sum_{k=1}^d \mathbb{R}_{\geq 0} \cdot y_k. \]

Theorem (K., Michalek and Sturmfels, 2019)

If \(\alpha_k > 0 \) *are integers, then* \(q(z), \, z \in C, \) *is a piecewise polynomial function that is differentiable of order \(\sum_{k=1}^d \alpha_k - n - 1. \)*

It is polynomial on each cone in the chamber complex of \(C. \)

If \(\alpha_1 = \cdots = \alpha_d = 1, \) *the function* \(q(z) \) *measures the volume of the* \((d - n) \)-dimensional polytope \(L^{-1}(z) \cap \mathbb{R}_{\geq 0}^d. \)
Questions

• Does some power of the elementary symmetric polynomial admit a determinantal representation?
• No power of the stable polynomial $p = x_1x_2 + 4(x_1 + x_2 + x_3 + x_4)(x_1x_2x_3 + x_1x_2x_4 + x_1x_3x_4 + x_2x_3x_4)$ is determinantal (Branden, 2011).
• Is $p - \alpha$ CM for some $\alpha > 0$?
Questions

• Does some power $E_{d,n}^r$ of the elementary symmetric polynomial admit a determinantal representation?

No power of the stable polynomial $p = x_1^2 + x_2^2 + 4(x_1 + x_2 + x_3 + x_4)(x_1x_2x_3 + x_1x_2x_4 + x_1x_3x_4 + x_2x_3x_4)$ is determinantal (Brändén, 2011).

Is $p - \alpha$ CM for some $\alpha > 0$?
Questions

• Does some power $E_{d,n}^r$ of the elementary symmetric polynomial admit a determinantal representation?
• No power of the stable polynomial

$$p = x_1^2 x_2^2 + 4(x_1 + x_2 + x_3 + x_4)(x_1 x_2 x_3 + x_1 x_2 x_4 + x_1 x_3 x_4 + x_2 x_3 x_4)$$

is determinantal (Brändén, 2011).
Questions

• Does some power $E_{d,n}^r$ of the elementary symmetric polynomial admit a determinantal representation?

• No power of the stable polynomial

$$p = x_1^2 x_2^2 + 4(x_1 + x_2 + x_3 + x_4)(x_1 x_2 x_3 + x_1 x_2 x_4 + x_1 x_3 x_4 + x_2 x_3 x_4)$$

is determinantal (Brändén, 2011). Is $p^{-\alpha}$ CM for some $\alpha > 0$?
Questions

• Does some power $E_{d,n}^r$ of the elementary symmetric polynomial admit a determinantal representation?

• No power of the stable polynomial

$$p = x_1^2 x_2^2 + 4(x_1 + x_2 + x_3 + x_4)(x_1 x_2 x_3 + x_1 x_2 x_4 + x_1 x_3 x_4 + x_2 x_3 x_4)$$

is determinantal (Brändén, 2011). Is $p^{-\alpha}$ CM for some $\alpha > 0$?

Thank you!