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Lingmin LIAO University Paris-East Créteil Multifractal analysis of the Birkhoff sums of St. Petersburg potential 2/29



Introduction Classical results Birkhoff averages Birkhoff sums

Introduction
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I. Saint Petersburg game (paradox)

Proposed by Nicolas Bernoulli on Sep. 9th 1713 in a letter to Pierre
Raymond de Montmort.

A solution by Daniel Bernoulli, who lived at Saint Petersburg, was
published in the Commentaries of the Imperial Academy of Science
of Saint Petersburg in 1738.

The game : tossing a fair coin at each stage.

if head appears at the first time, you gain 1 dollar, and stop,

if tails appears at the first time, go on the tossing, if at the second
time head appears, you gain 2 dollars (double) and stop,

if tails appears for both the first two times, go on the tossing, if at
the third time head appears, you gain 22 dollars (again double) and
stop,

. . .

Question : How much do you want to pay for entering the game ?
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II. Infinite expectation of the gain function

Let ϕ be the gain function. Then

ϕ takes the value 2n−1 with the probability 2−n,

the expectation of ϕ is

E(ϕ) =

∞∑
n=1

2n−1 × 2−n =

∞∑
n=1

1

2
= +∞.

Conclusion : for a fair play, we should pay infinite money for entering the
game !
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III. A model on the unit interval

We could construct the probability model on the unit interval.

T : the doubling map on (0, 1] defined by Tx = 2x− d2xe+ 1.

ε1(x) = d2xe − 1 and εn(x) := ε1(Tn−1x) for n ≥ 2.

each x ∈ (0, 1] can be written as

x =
ε1(x)

2
+ · · ·+ εn(x)

2n
+ · · · .

The tossing results can be identified with sequences ε1(x)ε2(x) . . . .

The gain function which will be called the Saint-Petersburg potential is a
function ϕ : (0, 1]→ R defined as

ϕ(x) = 2n if x ∈ (2−n−1, 2−n], ∀n ≥ 0.
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IV. Birkhoff sums and law of convergence
Let

Sn(x) = Snϕ(x) := ϕ(x) + ϕ(T (x)) + · · ·+ ϕ(Tn−1(x)), x ∈ (0, 1].

We can see that for Lebesgue a.e. x ∈ (0, 1],

lim
n→∞

Snϕ(x)

n
= +∞.

By using a result in Feller’s 1968 book, page 253, we have for any ε > 0,

lim
n→∞

Leb

{
x ∈ (0, 1] :

∣∣∣Snϕ(x)

n log n
− 1

log 2

∣∣∣ ≥ ε} = 0.

By applying Feller 1946 : we obtain that if {Ψn}n≥1 is an increasing
sequence such that Ψn →∞ as n→∞, then almost surely either

lim
n→∞

Snϕ(x)

Ψn
= 0 or lim sup

n→∞

Snϕ(x)

Ψn
=∞,

according as∑
n≥1

Leb{x ∈ (0, 1] : ϕ(x) ≥ Ψn} <∞ or =∞.
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V. Question of multifractal analysis
From multifractal analysis point of view, we are interested in the
following level sets

E(α) =

x ∈ (0, 1] : lim
n→∞

1

n

n−1∑
j=0

ϕ(T jx) = α

 α ≥ 1.

Question :

What is the Hausdorff dimension of E(α) ?

What is the nature of the dimension spectrum function
α 7→ dimH E(α) ?
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of Birkhoff averages
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I. General setting

(X, d) a metric space,

T : X → X a transformation.

ϕ : X → R a real-valued function, called potential.

Birkhoff average of ϕ at x :

Aϕ(x) := lim
n→∞

Snϕ(x)

n
, with Snϕ(x) :=

n−1∑
j=0

ϕ(T jx).

Level sets :

Eϕ(α) :=
{
x : Aϕ(x) = α

}
, α ∈ R ∪ {−∞,∞}.

Question : Dimension spectrum : f(α) := dimH(Eϕ(α)) =?
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II. A typical classical example
Borel normal numbers (typical Birkhoff average)

For each number x =
∑∞
n=1

xn
2n ∈ [0, 1] (xn = 0, 1), define

A(x) = lim
n→∞

x1 + · · ·+ xn
n

(= lim
n→∞

1

n

n−1∑
j=0

1[1/2,1](T
jx)),

(with Tx = 2x mod 1).

E. Borel 1909 :

A(x) =
1

2
L − a.e.

A. Besicovitch, 1934 ; H. G. Eggleston, 1949 :

dimH(Ep) =
−p log p− (1− p) log(1− p)

log 2

where
Ep :=

{
x ∈ [0, 1] : A(x) = p

}
.
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Spectrum of Besicovitch-Eggleston sets

0

1

dimH(Ep)

1
2 1 p
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III. Contributions to multifractal analysis of Birkhoff
averages

(Hölder) continuous potential, in mixing subshift of finite type,
C1+ε-mixing conformal repeller : Barreira–Schmeling 2000,
Barreira–Saussol 2001, Barreira–Saussol–Schmeling 2002,
Fan–Feng 2000, Fan–Feng–Wu 2001, Feng–Lau–Wu 2002, Olivier
1999, Olsen 2003, Pesin–Weiss 2001, Tempelman 2001, ....

Continuous potential, in systems with (weak, almost) specification
property : Taken-Verbytzky 2003, Chen–Küpper–Shu 2005,
Pfister–Sullivan 2007, Fan–Liao–Peyrière 2008, Thompson 2009,
Climenhaga–Thompson 2012, ....

Piecewise continuous (constant) potential in continued fractions :
Kinney–Pitcher 1966, Billingsley–Henningsen 1975,
Pollicott–Weiss 1999, Kesseböhmer–Stratmann 2007,
Liao–Ma–Wang 2008, Fan–Liao–Wang–Wu 2009, Fan–Liao–Ma
2010, Fan–Jordan–Liao–Rams 2015, Iommi–Jordan 2015, ....
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IV. Typical results

Conditional variational principle :

dimH Eϕ(α) = sup

{
hµ∫

X
log |T ′|dµ

: µ is invariant and

∫
X

ϕdµ = α

}
.

For continued fractions :

dimH Eϕ(α) = max

{
1

2
, sup
µ∈M(T )

{
hµ

−2
∫

log xdµ
:

∫
ϕdµ = α, hµ <∞

}}
.

Legendre transform version :

dimH

{
x : lim

n→∞

Snϕ(x)

Sn log |T ′|(x)
= α

}
= inf

q
{T (q) + qα},

where T (q) is the number such that P (T (q), q) = 0, and P (t, q) is the
pressure function associated to the potential −t log |T ′|+ qϕ.
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I. Result of the Birkhoff averages of St. Petersburg
potential

For t ∈ R and q > 0, define

P (t, q) := log

∞∑
j=1

2−tj−q(2
j−1).

P is a real-analytic function,

for each q > 0, there is a unique t(q) > 0 such that P (t(q), q) = 0,

q 7→ t(q) is real-analytic, strictly decreasing and convex.

Theorem (Kim–L–Rams–Wang, arXiv :1707.06059)

For any α ≥ 1 we have

dimH E(α) = inf
q>0
{t(q) + qα}.

Consequently, dimH E(1) = 0 and the function α 7→ dimH E(α) is real-
analytic, strictly increasing, concave, and has limit 1 as α→∞.
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II. Transference to an interval map of infinitely many
branches
Define for x ∈ (0, 1], n(x) := inf{n ≥ 0 : Tnx ∈ (1/2, 1]}. Then

n(x) = n if x ∈
(

1

2n+1
,

1

2n

]
, for all n ≥ 0.

Define T̂ : (0, 1]→ (0, 1] (called the acceleration of T ) by

T̂ (x) = Tn(x)+1(x) = 2n+1
(
x− 1

2n+1

)
if x ∈

(
1

2n+1
,

1

2n

]
, for all n ≥ 0.

Define a new potential function

φ(x) := 2n(x)+1 − 1, x ∈ (0, 1].

In fact, φ is nothing but the function satisfying φ(x) =
∑n(x)
j=0 ϕ(T jx).

Let n1 = n(x) + 1 ≥ 1, and nk = n(T̂ k−1x) + 1 for k ≥ 2, we have

n1+···+n`−1∑
j=0

ϕ(T jx) =
`−1∑
k=0

φ(T̂ kx) = 2n1 + · · ·+ 2n` − `.
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III. Transference lemma

Recall the set in question :

E(α) =

x ∈ (0, 1] : lim
n→∞

1

n

n−1∑
j=0

ϕ(T jx) = α

 (α ≥ 1).

Define

Ẽ(α) :=

{
x ∈ (0, 1] : lim

`→∞

∑`−1
k=0 φ(T̂ kx)∑`−1

k=0 log2 |T̂ ′|(T̂ kx)
= α

}
(α ≥ 1).

Transference Lemma (KLRW, arXiv :1707.06059)

For all α ≥ 1, we have E(α) = Ẽ(α).
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IV. Ruelle theory for interval maps of infinite many
branches
We consider the potential function with two parameters t > 0, q > 0

ψt,q := −t log |T̂ ′| − (log 2) · qφ.

Define Ruelle transfer operator

Lt,qf(x) :=
∑

y∈T̂−1x

eψt,q(y)f(y).

By Ruelle theory (see ex. Hanus–Mauldin–Urbański 2002)

∃ eigenvalue λt,q and eigenfunction ht,q for Lt,q,

∃ eigenfunction νt,q for the conjugate operator L∗t,q.

pressure function P (t, q) = log λt,q,

Gibbs measure µt,q = ht,q · νt,q.

In the present case, the pressure function can be computed by

P (t, q) = lim
`→∞

1

`
log

∑
T̂ `x=x

exp(S`ψt,q(x)) = log

∞∑
j=1

2−tj−q(2
j−1).
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V. Upper bound of dimH Ẽ(α)

For (n1, · · · , n`) ∈ N`, a T̂ -dyadic cylinder of order ` is defined as

D`(n1, · · · , n`) = {x ∈ (0, 1] : nk(x) = nk, 1 ≤ k ≤ `} = [0n110n2 . . . 0n`1].

Let D`(x) be the T̂ -dyadic cylinder containing x of order `. By the Gibbs
property of µt,q,

logµt,q(D`(x))

log |D`(x)| =
S`ψt,q(x)− `P (t, q)

−S` log |T̂ ′|(x)

=
−tS` log |T̂ ′|(x)− (log 2) · qS`φ(x)− `P (t, q)

−S` log |T̂ ′|(x)

= t+ q
S`φ(x)

S` log2 |T̂ ′|(x)
+

`P (t, q)

S` log |T̂ ′|(x)
.

For each q > 0, let t(q) be the the number such that P (t(q), q) = 0.

Then for all x ∈ Ẽ(α),

lim inf
r→0

logµt,q(B(x, r))

log r
≤ lim inf

`→∞

logµt,q(B(x, |D`(x)|))
log |D`(x)|

≤ lim inf
`→∞

logµt,q(D`(x))

log |D`(x)| = t(q) + qα,
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VI. Question and remark

Question : More general potentials ? What about ϕ(x) = 1/x ?

Remark : Fan–Schmeling, personal communications : multifractal
analysis of the Birkhoff averages of the potential ϕ(x) = log | sin(x)| on
(0, 1). It is unbounded but integrable.

Lingmin LIAO University Paris-East Créteil Multifractal analysis of the Birkhoff sums of St. Petersburg potential 21/29



Introduction Classical results Birkhoff averages Birkhoff sums

Fast increasing Birkhoff sums

of St. Petersburg potentiial
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I. Questions and results

Let Ψ : N→ R+ be an increasing function such that Ψ(n)/n→∞ as
n→∞.

Question : For β > 0, what is the Hausdorff dimension of the level set

E(Ψ, β) :=

{
x ∈ (0, 1] : lim

n→∞

Snϕ(x)

Ψ(n)
= β

}
?

Theorem (Kim–L–Rams–Wang, arXiv :1707.06059)

If Ψ(n) is one of the following

Ψ(n) = n log n, Ψ(n) = na (a > 1), Ψ(n) = 2n
γ

(0 < γ < 1/2),

then for any β > 0, dimH E(Ψ, β) = 1.

If Ψ(n) = 2n
γ

with γ ≥ 1/2, then for any β > 0, E(Ψ, β) = ∅.
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II. General result for the case of full dimension

Lemma (Kim–L–Rams–Wang, arXiv :1707.06059)

Let Ψ : N→ N be an increasing function such that Ψ(n)/n→∞ as n→
∞. Assume that there exists a subsequence Nk satisfying the following
conditions

Nk −Nk−1 →∞, Ψ(Nk)−Ψ(Nk−1)→∞, (1)

and

Ψ(Nk−1)

Ψ(Nk)
→ 1,

log
(
Ψ(Nk)−Ψ(Nk−1)

)
Nk −Nk−1

→ 0, (2)

as k →∞. Then the set

E(Ψ, 1) =
{
x ∈ (0, 1] : lim

n→∞

1

Ψ(n)
Snϕ(x) = 1

}
has Hausdorff dimension 1.
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III. Key observations

Lemma 1

Let W be an integer such that 2t ≤ W < 2t+1 for some positive integer
t. For any 0 ≤ n ≤ t, among the integers between W and W (1 + 2−n),
there is one V = V (W,n) whose binary expansion of V has at most n+ 2
digits 1 and ends with at least t− n zeros.

Lemma 2

For each integer W , and any integer n ≤ logW , we can find a word w
with length

|w| ≤ (n+ 2)(2 + logW )

and for any x ∈ I|w|(w)

W ≤
|w|−1∑
j=0

ϕ(T jx) ≤W (1 + 2−n).

Lingmin LIAO University Paris-East Créteil Multifractal analysis of the Birkhoff sums of St. Petersburg potential 25/29



Introduction Classical results Birkhoff averages Birkhoff sums

IV. Cantor type set

For each k ≥ 1, we write Wk := Ψ(Nk)−Ψ(Nk−1) and let {nk} be a
sequence of integers tending to ∞ such that

nk ≤ logWk, nk ·
log
(
Ψ(Nk)−Ψ(Nk−1)

)
Nk −Nk−1

→ 0.

Now for Wk and nk, let wk be the word given in Lemma 2. Then the
length ak of wk satisfies

ak ≤(nk + 2)(2 + logWk)

=(nk + 2) (2 + log(Ψ(Nk)−Ψ(Nk−1))) = o(Nk −Nk−1)

and for any x ∈ Iak(wk),

Wk ≤
ak−1∑
j=0

ϕ(T jx) ≤Wk(1 + 2−nk).

Define tk, `k to be the integers satisfying

Nk −Nk−1 − ak = tkm+ `k, for some 0 ≤ `k < m.
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V. Cantor type set - continued

Fix a large integer m and write

U =
{
u = (ε1, · · · , εm) : εm = 1, εi ∈ {0, 1}, i 6= m

}
.

Level 1 of the Cantor subset. Define

E1 =
{
IN1(u1, · · · , ut1 , 1`1 , w1) : ui ∈ U , 1 ≤ i ≤ t1

}
.

Denote by IN1
(U1) a general cylinder in E1.

Level 2 of the Cantor subset. Fix an element IN1 = IN1(U1) ∈ E1. Define

E2(IN1(U1)) =
{
IN2(U1, u1, · · · , ut2 , 1

`2 , w2) : ui ∈ U , 1 ≤ i ≤ t2
}
.

Then E2 =
⋃
IN1
∈E1

E2(IN1
). Let IN2

(U2) be a general cylinder in E2.

From Level k to k + 1. Fix INk(Uk) ∈ Ek. Define

Ek+1(INk (Uk)) =
{
INk+1(Uk, u1, · · · , utk+1 , 1

`k+1 , wk+1) : ui ∈ U , 1 ≤ i ≤ tk+1

}
.

Then
Ek+1 =

⋃
INk∈Ek

Ek+1(INk).
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VI. Empty set case

Now suppose that Ψ(n) = 2n
γ

with 1/2 ≤ γ < 1. Let β > 0 be given.
Then, for x ∈ E(Ψ, β), if x has binary expansion

x = [0n1−110n2−11 · · · 0n`−11 · · · ]

then

Sn1+n2+···+n`(x)

Ψ(n1 + n2 + · · ·+ n`)
=

2n1 + 2n2 + · · ·+ 2n` − `
2(n1+n2+···+n`)γ

→ β,

Sn1+n2+···+n`+1(x)

Ψ(n1 + n2 + · · ·+ n` + 1)
=

2n1 + 2n2 + · · ·+ 2n` − `+ 2n`+1−1

2(n1+n2+···+n`+1)γ
→ β,

which implies that

Sn1+n2+···+n`+1
(x)

Sn1+n2+···+n`(x)
= 1 +

2n`+1 − 1

2n1 + 2n2 + · · ·+ 2n` − `
→ 1.

This further implies

2(n1+n2+···+n`+n`+1)
γ

2(n1+n2+···+n`)γ
=

Ψ(n1 + · · ·+ n`+1)

Ψ(n1 + · · ·+ n`)
→ 1.
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VII. Empty set case -continued
Thus

γn`+1

(n1 + · · ·+ n`)1−γ
≈ (n1 + · · ·+ n` + n`+1)γ − (n1 + · · ·+ n`)

γ → 0.

Therefore, for any ε > 0, there exists k0 ≥ 1 such that for all j > k0,

nj < ε(n1 + n2 + · · ·+ nj−1)1−γ .

Then for any k0 < j ≤ `

nj < ε(n1 + n2 + · · ·+ n`)
1−γ .

This implies

Sn1+n2+···+n`(x) = 2n1 + 2n2 + · · ·+ 2n` − ` ≤M + `2ε(n1+n2+···+n`)1−γ − `,

with M := 2n1 + · · ·+ 2nk0 . Thus

Sn1+n2+···+n`(x)

Ψ(n1 + n2 + · · ·+ n`)
<
M + `2ε(n1+n2+···+n`)1−γ − `

2(n1+n2+···+n`)γ
. (3)

Observing nj ≥ 1, we deduce that the righthand of (3) converges to 0
for 1/2 ≤ γ < 1, a contradiction ! Hence E(Ψ, β) = ∅.

Lingmin LIAO University Paris-East Créteil Multifractal analysis of the Birkhoff sums of St. Petersburg potential 29/29


	Introduction
	Classical results on multifractal analysis of Birkhoff averages
	Multifractal analysis of the Birkhoff averages of St. Petersburg potential
	Fast increasing Birkhoff sums of St. Petersburg potential

