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Introduction

I. Saint Petersburg game (paradox)
@ Proposed by Nicolas Bernoulli on Sep. 9th 1713 in a letter to Pierre
Raymond de Montmort.
@ A solution by Daniel Bernoulli, who lived at Saint Petersburg, was
published in the Commentaries of the Imperial Academy of Science
of Saint Petersburg in 1738.
The game : tossing a fair coin at each stage.
@ if head appears at the first time, you gain 1 dollar, and stop,

o if tails appears at the first time, go on the tossing, if at the second
time head appears, you gain 2 dollars (double) and stop,

o if tails appears for both the first two times, go on the tossing, if at
the third time head appears, you gain 22 dollars (again double) and
stop,

° ...

Question : How much do you want to pay for entering the game?
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Introduction

Il. Infinite expectation of the gain function

Let ¢ be the gain function. Then
@ ¢ takes the value 2"~ ! with the probability 277,

@ the expectation of ¢ is

E(e) = Z 2nhx 27 = Z % = +o0.
n=1 n=1

Conclusion : for a fair play, we should pay infinite money for entering the
game!!
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Introduction

I1l. A model on the unit interval

We could construct the probability model on the unit interval.
@ T : the doubling map on (0, 1] defined by Tz = 2z — [2z] + 1.
e c1(z) = [22] — 1 and e, (x) := &1 (T" 1) for n > 2.
@ each z € (0,1] can be written as

The tossing results can be identified with sequences ¢ (x)ea(z) .. ..

The gain function which will be called the Saint-Petersburg potential is a
function ¢ : (0,1] — R defined as

px)=2"ifzec (271,27, Vn > 0.
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IV. Birkhoff sums and law of convergence
Let

Sn(@) = Snp(@) = @(z) + o(T(x)) + -+ o(T" " (2)), € (0,1].
We can see that for Lebesgue a.e. z € (0, 1],

lim M = 400

n—00 n

By using a result in Feller's 1968 book, page 253, we have for any € > 0,

3 1
lim Lebdz e (0,1 : [2n8®) _ ‘25 =0.
n—o0 nlogn  log2

By applying Feller 1946 : we obtain that if {¥,,},>1 is an increasing
sequence such that ¥,, — oo as n — oo, then almost surely either

lim 757“0(@ =0 or limsup Lﬁo(@ = 00,
n—00 n n—o00 \I]n

according as

Z Leb{z € (0,1] : p(z) > ¥,,} <0 or =o0.

n>1
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Introduction

V. Question of multifractal analysis
From multifractal analysis point of view, we are interested in the
following level sets

n—1

1 .
— - i — J = >
E(a) mE(O,l].Jgr;onZ%@(T )=« a>1.
=

Question :
e What is the Hausdorff dimension of E(«)?
@ What is the nature of the dimension spectrum function
a— dimyg E(a)?
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Classical results on

multifractal analysis

of Birkhoff averages
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Classical results

l. General setting

e (X,d) a metric space,
@ T : X — X a transformation.
@ ¢ : X — R a real-valued function, called potential.

o Birkhoff average of ¢ at x :

n—1
Ay(x) = nh_}n;@ Sn%(m)7 with S, p(z) = Z o(TVz).
j=0

o Level sets :

E (a):= {z A (z) = a}, a € RU{—00,00}.

Question : Dimension spectrum : f(«) := dimy (E, (o)) =7
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Classical results

Il. A typical classical example
Borel normal numbers (typical Birkhoff average)
@ For each number z = >>°7 | 22 € [0,1] (z, = 0, 1), define

n=1 2n
1+ +z 1
L R R § j
A(z) = nlgTolo - (= nlggo - Z(:) 1121 (T7x)),
=

(with T2 = 22 mod 1).
e E. Borel 1909 :

Ax) = % L—a.e.

o A. Besicovitch, 1934 ; H. G. Eggleston, 1949 :

_ —plogp — (1 —p)log(1 — p)

dimH (Ep) log 9

where E, — {x €1[0,1]: A(z) = p}.
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Spectrum of Besicovitch-Eggleston sets
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Classical results

l1l. Contributions to multifractal analysis of Birkhoff
averages

(Holder) continuous potential, in mixing subshift of finite type,
C'*¢-mixing conformal repeller : Barreira—Schmeling 2000,
Barreira—Saussol 2001, Barreira—Saussol-Schmeling 2002,
Fan—-Feng 2000, Fan—-Feng—Wu 2001, Feng—Lau—Wu 2002, Olivier
1999, Olsen 2003, Pesin—Weiss 2001, Tempelman 2001, ....

Continuous potential, in systems with (weak, almost) specification
property : Taken-Verbytzky 2003, Chen—Kiipper-Shu 2005,
Pfister—Sullivan 2007, Fan-Liao—Peyriere 2008, Thompson 2009,
Climenhaga—Thompson 2012, ....

Piecewise continuous (constant) potential in continued fractions :
Kinney—Pitcher 1966, Billingsley—Henningsen 1975,
Pollicott—Weiss 1999, Kessebohmer—Stratmann 2007,
Liao—Ma-Wang 2008, Fan—Liao—Wang—-Wu 2009, Fan-Liao—Ma
2010, Fan—Jordan-Liao—Rams 2015, lommi-Jordan 2015, ....
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Classical results

IV. Typical results

Conditional variational principle :

oy : is invariant and /
fX10g|T/\dM s X

For continued fractions :

1 h
dimpg E,(a) = max{ =, sup {”:/(pdu:a, h <oo} .
1 Ep(c) {2 pem(r) L —2 [logzdp =

Legendre transform version :

dimy E, () sup{ gpdua}.

_ L Snp(x) 1 _.
dimgy {x : nh_}rglo m = a} = quf{T(CI) + qa},

where T'(q) is the number such that P(T(¢),q) = 0, and P(t,q) is the
pressure function associated to the potential —tlog |T’| + ge.
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Multifractal analysis
of the Birkhoff averages
of St. Petersburg potentiial
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Birkhoff averages

I. Result of the Birkhoff averages of St. Petersburg
potential

For ¢t € R and ¢ > 0, define

P(t,q) :=log Z 9ti—a(2~1),

j=1
@ P is a real-analytic function,
e for each ¢ > 0, there is a unique t(¢q) > 0 such that P(t(q),q) =0,

e ¢+ t(q) is real-analytic, strictly decreasing and convex.

Theorem (Kim—L-Rams-Wang, arXiv :1707.06059)

For any a > 1 we have
dimg E(a) = inf {t(q) + qa}.
q>0

Consequently, dimy E(1) = 0 and the function o — dimp E(«) is real-
analytic, strictly increasing, concave, and has limit 1 as o — oc.
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Birkhoff averages

Il. Transference to an interval map of infinitely many
branches

Define for z € (0,1], n(z) :=inf{n > 0: Tz € (1/2,1]}. Then
= if 1 L forallm >0
n(z)=n ifze€ o1 5 | o foralln 0.
Define T': (0,1] — (0, 1] (called the acceleration of T') by

T(x) =T (2) = 2" (a: - —) ifze (L i] , forall n. > 0.

Define a new potential function
P(x) :=2"@+ _1 2 € (0,1].

In fact, ¢ is nothing but the function satisfying ¢(z) = Zn(%) o(T'zx).

.
Let ny =n(x) +1>1, and ng = n(T" 'z) + 1 for k > 2, we have

nit+-+ng—1 . /—1 R
Z p(Tz) = ¢(Tkx) =M ..oy,
j=0 k=0
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Birkhoff averages

I1l. Transference lemma

Recall the set in question :

n—1

E(a) =<z €(0,1] :HILII;O%Z@(zj):a (a>1).
=0

Define

_ L Y d(The) }
E(a) :=<q2 € (0,1] : lim i —— =« a>1).
“ { <O B T s, P T) =

Transference Lemma (KLRW, arXiv :1707.06059)

For all & > 1, we have E(a) = E(a).
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Birkhoff averages

IV. Ruelle theory for interval maps of infinite many
branches

We consider the potential function with two parameters ¢t > 0,q > 0
Wt,q = —tlog|T'| - (log2) - g¢.
Define Ruelle transfer operator
Loof(@)= Y e ().
yeT—lz

By Ruelle theory (see ex. Hanus—Mauldin—Urbaniski 2002)
o Jeigenvalue )\; 4 and eigenfunction h¢ 4 for Ly 4,
e J eigenfunction vy 4 for the conjugate operator £;
@ pressure function P(t, q) = log A 4,
o Gibbs measure ;g = hy g - Vi q-

In the present case, the pressure function can be computed by

P(t,q) = hm log Z exp(Sety ¢(x logz2 ti—a(2

Tlor=x
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V. Upper bound of dimy E(«)
For (n1,--- ,n¢) € N¥, a T-dyadic cylinder of order ¢ is defined as
Dy(ny, -+ ,ng) ={x € (0,1] : ng(x) =ng, 1 <k <L} =[0"10"2...0"1].
Let Dy(x) be the f—dyadic cylinder containing x of order £. By the Gibbs
property of L 4,
log put,q(De(x)) _ Setpr,q(x) — €P(t,q)
log [ De(z)| —S¢log |T"|(x)
_ —tSelog |T'|(z) — (log2) - ¢Se(x) — £P(t,q)
—Selog |T"|(z)
Sed(z) eP(t, q)
Selogy [T'|(z) ~ Selog|T"|(x)

For each ¢ > 0, let t(¢q) be the the number such that P(t(q),q) = 0.
Then for all x € E(a),

lim jnf (28 HLaB@ )y 0 108 0Bl | D))
=0 logr —o0 log | De ()]
< lim inf 128 #ta(De())

=t
t=oo  log|De(z)| (9) + qo,
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Birkhoff averages

VI. Question and remark
Question : More general potentials ? What about ¢(z) = 1/x7?
Remark : Fan-Schmeling, personal communications : multifractal

analysis of the Birkhoff averages of the potential ¢(x) = log|sin(x)| on
(0,1). It is unbounded but integrable.
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Birkhoff sums

Fast increasing Birkhoff sums
of St. Petersburg potentiial
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Birkhoff sums

l. Questions and results

Let ¥ : N — R™ be an increasing function such that ¥(n)/n — oo as

n — 00.

Question : For § > 0, what is the Hausdorff dimension of the level set
Sn@(f)

E(D,8) = {x € (0.1]: lim Zprs” = B}?

Theorem (Kim—L-Rams-Wang, arXiv :1707.06059)

If U'(n) is one of the following

U(n) =nlogn, ¥(n)=n® (a>1), ¥(n)=2"" (0<vy<1/2),
then for any 8 > 0, dimy E(V, 8) = 1.
If U(n) =2"" with v > 1/2, then for any 3 > 0, E(¥, 3) = (.
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Birkhoff sums

I1. General result for the case of full dimension
Lemma (Kim-L-Rams-Wang, arXiv :1707.06059)

Let ¥ : N — N be an increasing function such that ¥(n)/n — oo as n —
00. Assume that there exists a subsequence Ny satisfying the following

conditions
N — N1 — o, \I/(Nk) — \I/(Nkfl) — 00, (1)
and
U(Nj_ 1 U(Ng) — V(N
( k1>_>17 og (U(Ny) — ¥( kl))—>0, 2
\If(Nk) N — N1

as k — o0o. Then the set

B(U,1) = {x €(0,1): lim ﬁsn(p(x) - 1}

has Hausdorff dimension 1.
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Birkhoff sums

I1l. Key observations

Lemma 1

Let W be an integer such that 2! < W < 2!*! for some positive integer
t. For any 0 < n < ¢, among the integers between W and W (1 + 27™),
there is one V' = V(W, n) whose binary expansion of V' has at most n + 2
digits 1 and ends with at least ¢ — n zeros.

Lemma 2
For each integer W, and any integer n < log W, we can find a word w
with length
|lw| < (n+2)(2 + log W)
and for any = € I}, (w)

|w|—1
WY o(Tin) < W(i+27)

=0
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IV. Cantor type set
For each k > 1, we write W}, := U(Ny) — U(Ng_1) and let {ny} be a
sequence of integers tending to oo such that

1 U(Ng) — V(N_
ng < log Wy, ny - og( g\/':)—Nk (1 k 1)) — 0.

Now for W}, and ny, let wy be the word given in Lemma 2. Then the
length a of wy satisfies

k S(nk + 2)(2 + log Wk)
=(nk +2) (2 + log(¥(Nk) — ¥(Ng-1))) = o(Ni — Ni—1)
and for any z € I, (wg),

akl

Wy < Z ) < We(1427"),

Define t, {) to be the integers satisfying

Nk — Ni—1 — ar = tgm + £, for some 0 < /. < m.
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V. Cantor type set - continued

Fix a large integer m and write
U= {u =(e1, " ,&m) i &m=1,6, € {0,1},1 # m}.
Level 1 of the Cantor subset. Define

E = {INl(ul,u- g, 19 wy) tu €U, 1<0 < tl}.
Denote by In, (Uy) a general cylinder in Fy.
Level 2 of the Cantor subset. Fix an element In, = In,(U1) € E;. Define
Ex(In, (Uy)) = {INz(Ul,Ul,“' s Uty 1Z2,w2) tu; UL <i < tz}.
Then E; = UINleEl Es(In,). Let In,(Us) be a general cylinder in Es.
From Level k to k + 1. Fix Iy, (Uy) € E). Define
Ery1(In, (Ur)) = {INk+1(Uk7u1,"' Uty 15 wpgn) tus €U < < tk+1}-

Then
Eemi= |J ErnUn,).

In, €EK
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VI. Empty set case

Now suppose that ¥(n) = 2" with 1/2 < < 1. Let 3 > 0 be given.
Then, for x € E(¥, ), if « has binary expansion

z=[0""110" 0™

then
Sn1+n2+'--+ng (LL') o 271 4 2M2 . 4 2T — ) N ﬂ
\IJ(nl +7’l2++n[) - 9(n1+na+-4ng)7 )
Snytnattne+1(T) 2 4 QN2 ... 2T g el
= - B,
U(ni+ng+---+ng+1) o(nitnat-Fne+1)7
which implies that
Sn1+n2+..4+n[+1 (.CC) 14 2me+1 1 N
Sn1+n2+~~-+ne ((E) 21 4 2n2 . 2T —

This further implies

2(n1+n2+-~+nz+ne+1)7 B \Ij(nl 4+ 4 né-{-l) 1
2(nitnot-+ne)? B \I/(’n,l 4+ -4 ’I’Lz) '
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VIl. Empty set case -continued

Thus

Y41
(na + -+ )=

Rmi++net+neg) — (it +ne)” = 0.

Therefore, for any € > 0, there exists kg > 1 such that for all j > kg,
nj <e(ni+mna+---+n;_1) 7.
Then for any ko < j </
nj <e(ni+mna+---+ng)' 7.
This implies
Sy tngtotng(T) = 2% 272 oo 4 2™ f < M 2 (AR2EAnO T
with M := 2™ + ... 4 2"0_. Thus

Sn1+n2+...+ne (I) M + 625(”1+”2+'~+n@)1*7 _y

\I/(m + no +~~'+7’Lg) 2(nitnot-dng)Y

(3)

Observing n; > 1, we deduce that the righthand of (3) converges to 0
for 1/2 <~ < 1, a contradiction! Hence E(¥,3) = 0.
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