Generalized Permutohedra: Ehrhart Positivity and Minkowski Linear Functionals

Mohan Ravichandran, Bogazici, Istanbul

IML, Unimodality, Log Concavity and Beyond

March 19, 2020
1 Valuations

2 Ehrhart Positivity

3 Generalized Permutohedra

4 Open Problems
Valuations on Convex Sets

\mathcal{K}_d: The class of convex sets in \mathbb{R}^d.
Valuations on Convex Sets

\(\mathcal{K}_d \): The class of convex sets in \(\mathbb{R}^d \).

A map \(\phi: \mathcal{K}_d \to \mathbb{R} \) is called a valuation if for every \(A, B \in \mathcal{K}_d \),

\[
\phi(A \cup B) = \phi(A) + \phi(B) - \phi(A \cap B),
\]

whenever \(A \cup B \) is also in \(\mathcal{K}_d \).
Valuations on Convex Sets

\(\mathcal{K}_d \): The class of convex sets in \(\mathbb{R}^d \).

A map \(\phi : \mathcal{K}_d \to \mathbb{R} \) is called a valuation if for every \(A, B \in \mathcal{K}_d \),

\[
\phi(A \cup B) = \phi(A) + \phi(B) - \phi(A \cap B),
\]

whenever \(A \cup B \) is also in \(\mathcal{K}_d \).

Some examples of valuations:

1. Volume.
2. Surface area.
3. Volume of slice with a fixed hyperplane.
4. Expected Volume of intersection with random \(k \) dimensional subspace (uniformly distributed with respect to the unique \(O(d) \) invariant measure on \(G(d, k) \)).
A map $\phi : \mathcal{K}_d \to \mathbb{R}$ is called a valuation if for every $A, B \in \mathcal{K}_d$,

$$\phi(A \cup B) = \phi(A) + \phi(B) - \phi(A \cap B),$$

whenever $A \cup B$ is also in \mathcal{K}_d.

Some examples of valuations:

1. Volume.
2. Surface area.
3. Volume of slice with a fixed hyperplane.
4. Expected Volume of intersection with random k dimensional subspace (uniformly distributed with respect to the unique $O(d)$ invariant measure on $G(d, k)$).

Let us call the valuations in the last item V_k for $0 \leq k \leq d$.

Note that $V_0 = 1$ and V_{d-1} is the surface area and V_d is the usual volume.
Valuations on Convex Sets

\(\mathcal{K}_d \): The class of convex sets in \(\mathbb{R}^d \).

A map \(\phi : \mathcal{K}_d \rightarrow \mathbb{R} \) is called a valuation if for every \(A, B \in \mathcal{K}_d \),

\[
\phi(A \cup B) = \phi(A) + \phi(B) - \phi(A \cap B),
\]

whenever \(A \cup B \) is also in \(\mathcal{K}_d \).

Some examples of valuations:

1. Volume.
2. Surface area.
3. Volume of slice with a fixed hyperplane.
4. Expected Volume of intersection with random \(k \) dimensional subspace (uniformly distributed with respect to the unique \(O(d) \) invariant measure on \(G(d, k) \)).

Let us call the valuations in the last item \(V_k \) for \(0 \leq k \leq d \).

Note that \(V_0 = 1 \) and \(V_{d-1} \) is the surface area and \(V_d \) is the usual volume.

\(V_1 \) is the mean width.
Valuations on Convex Sets

\mathcal{K}_d: The class of convex sets in \mathbb{R}^d.

A map $\phi: \mathcal{K}_d \rightarrow \mathbb{R}$ is called a valuation if for every $A, B \in \mathcal{K}_d$,

$$\phi(A \cup B) = \phi(A) + \phi(B) - \phi(A \cap B),$$

whenever $A \cup B$ is also in \mathcal{K}_d.

Some examples of valuations:

1. Volume.
2. Surface area.
3. Volume of slice with a fixed hyperplane.
4. Expected Volume of intersection with random k dimensional subspace (uniformly distributed with respect to the unique $O(d)$ invariant measure on $G(d, k)$).

Let us call the valuations in the last item V_k for $0 \leq k \leq d$.

Note that $V_0 = 1$ and V_{d-1} is the surface area and V_d is the usual volume.

V_1 is the mean width.
Valuations on Convex Sets

\(\mathcal{K}_d \): The class of convex sets in \(\mathbb{R}^d \).

A map \(\phi : \mathcal{K}_d \to \mathbb{R} \) is called a valuation if for every \(A, B \in \mathcal{K}_d \),

\[
\phi(A \cup B) = \phi(A) + \phi(B) - \phi(A \cap B),
\]

whenever \(A \cup B \) is also in \(\mathcal{K}_d \).

Some examples of valuations:

1. Volume.
2. Surface area.
3. Volume of slice with a fixed hyperplane.
4. Expected Volume of intersection with random \(k \) dimensional subspace (uniformly distributed with respect to the unique \(O(d) \) invariant measure on \(G(d, k) \)).

Let us call the valuations in the last item \(V_k \) for \(0 \leq k \leq d \).

Note that \(V_0 = 1 \) and \(V_{d-1} \) is the surface area and \(V_d \) is the usual volume.

\(V_1 \) is the mean width.

One reason for studying valuations is Hilbert’s third problem.
Let D_2 be the group of isometries of \mathbb{R}^2.

Definition

A dissection of a polytope $A \subset \mathbb{R}^2$ is a collection of polytopes A_1, \ldots, A_k such that $A = \bigcup_{i=1}^{k} A_i$ and such that the interiors of the A_i are disjoint.
Hilbert’s third problem

Let \mathcal{D}_2 be the group of isometries of \mathbb{R}^2.

Definition

A dissection of a polytope $A \subset \mathbb{R}^2$ is a collection of polytopes A_1, \ldots, A_k such that $A = \bigcup_{i=1}^{k} A_i$ and such that the interiors of the A_i are disjoint.

Two polytopes $A, B \subset \mathbb{R}^2$ are called \mathcal{D}_2 equidissectable if there are dissections $A = \bigcup_{i=1}^{k} A_i$ and $B = \bigcup_{i=1}^{n} B_i$ and such that $A_i \sim_{\mathcal{D}_2} B_i$ for each i.

Caveat: What we are calling equidissectability is usually called *Scissors Congruence*.
Hilbert’s third problem

Let D_2 be the group of isometries of \mathbb{R}^2.

Definition

A dissection of a polytope $A \subset \mathbb{R}^2$ is a collection of polytopes A_1, \ldots, A_k such that $A = \bigcup_{i=1}^{k} A_i$ and such that the interiors of the A_i are disjoint.

Two polytopes $A, B \subset \mathbb{R}^2$ are called D_2 equidissectable if there are dissections $A = \bigcup_{i=1}^{k} A_i$ and $B = \bigcup_{i=1}^{n} B_i$ and such that $A_i \sim_{D_2} B_i$ for each i.

Caveat: What we are calling equidissectability is usually called Scissors Congruence.

The most elementary way of computing volume is to break down a set into elementary sets and sum up their elementary volumes. To this end, we have

Theorem (Bolyai-Gerwein)

Two plane polygons are of equal area iff they are D_2 equidissectable.
Hilbert’s third problem

Let \mathcal{D}_2 be the group of isometries of \mathbb{R}^2.

Definition

A dissection of a polytope $A \subset \mathbb{R}^2$ is a collection of polytopes A_1, \ldots, A_k such that $A = \bigcup_{i=1}^{k} A_i$ and such that the interiors of the A_i are disjoint.

Two polytopes $A, B \subset \mathbb{R}^2$ are called \mathcal{D}_2 equidissectable if there are dissections $A = \bigcup_{i=1}^{k} A_i$ and $B = \bigcup_{i=1}^{n} B_i$ and such that $A_i \sim_{\mathcal{D}_2} B_i$ for each i.

Caveat: What we are calling equidissectability is usually called *Scissors Congruence*.

The most elementary way of computing volume is to break down a set into elementary sets and sum up their elementary volumes. To this end, we have

Theorem (Bolyai-Gerwein)

Two plane polygons are of equal area iff they are \mathcal{D}_2 equidissectable.

Hilbert’s third problem (essentially) asked the following

Question (Hilbert’s third problem)

Does the Bolyai-Gerwein result extend to higher dimensions?
Hilbert’s third problem

Let \mathcal{D}_2 be the group of isometries of \mathbb{R}^2.

Definition

A dissection of a polytope $A \subset \mathbb{R}^2$ is a collection of polytopes A_1, \ldots, A_k such that $A = \bigcup_{i=1}^k A_i$ and such that the interiors of the A_i are disjoint.

Two polytopes $A, B \subset \mathbb{R}^2$ are called \mathcal{D}_2 equidissectable if there are dissections $A = \bigcup_{i=1}^k A_i$ and $B = \bigcup_{i=1}^n B_i$ and such that $A_i \sim_{\mathcal{D}_2} B_i$ for each i.

Caveat: What we are calling equidissectability is usually called **Scissors Congruence**.

The most elementary way of computing volume is to break down a set into elementary sets and sum up their elementary volumes. To this end, we have

Theorem (Bolyai-Gerwein)

Two plane polygons are of equal area iff they are \mathcal{D}_2 equidissectable.

Hilbert’s third problem (essentially) asked the following

Question (Hilbert’s third problem)

Does the Bolyai-Gerwein result extend to higher dimensions?

This was the first of Hilbert’s 23 problems to be solved, actually in the same year!
Dehn Invariants

Definition

Let $f : \mathbb{R} \to \mathbb{R}$ be an additive map that is zero at π but is not identically zero. Such a f must be non-measurable. The associated Dehn invariant for a polytope $P \subset \mathbb{R}^3$ is

$$f^*(P) = \sum_{i=1}^{k} \sigma_i f(\alpha_i),$$

where the σ_i are the edge lengths and the α_i are the dihedral angles.
Dehn Invariants

Definition

Let $f : \mathbb{R} \rightarrow \mathbb{R}$ be an additive map that is zero at π but is not identically zero. Such a f must be non-measurable. The associated Dehn invariant for a polytope $P \subset \mathbb{R}^3$ is

$$f^*(P) = \sum_{i=1}^{k} \sigma_i f(\alpha_i),$$

where the σ_i are the edge lengths and the α_i are the dihedral angles.

Dehn showed the necessity of the following (settling Hilbert’s third problem). The sufficiency was settled by Sydler in 1965.

Theorem (Dehn, Sydler)

Polytopes $P, Q \subset \mathbb{R}^3$ are equidissectable under D_3 iff all their Dehn invariants are the same. It is easy to see that every Dehn invariant of the standard cube is zero while every Dehn invariant of the regular tetrahedron is non-zero.
Dehn Invariants

Definition

Let \(f : \mathbb{R} \rightarrow \mathbb{R} \) be an additive map that is zero at \(\pi \) but is not identically zero. Such a \(f \) must be non-measurable. The associated Dehn invariant for a polytope \(P \subset \mathbb{R}^3 \) is

\[
f^*(P) = \sum_{i=1}^{k} \sigma_i f(\alpha_i),
\]

where the \(\sigma_i \) are the edge lengths and the \(\alpha_i \) are the dihedral angles.

Dehn showed the necessity of the following (settling Hilbert’s third problem). The sufficiency was settled by Sydler in 1965.

Theorem (Dehn, Sydler)

Polytopes \(P, Q \subset \mathbb{R}^3 \) are equidissectable under \(D_3 \) iff all their Dehn invariants are the same. It is easy to see that every Dehn invariant of the standard cube is zero while every Dehn invariant of the regular tetrahedron is non-zero.

There is a great back story to this: This, unknown to Hilbert had been proposed by Władysław Kretkowski in 1882 for a prize contest in Krakow and solved by Ludwig Birkenmajer in 1884.
Dehn Invariants

Definition

Let $f : \mathbb{R} \to \mathbb{R}$ be an additive map that is zero at π but is not identically zero. Such a f must be non-measurable. The associated Dehn invariant for a polytope $P \subset \mathbb{R}^3$ is

$$f^*(P) = \sum_{i=1}^{k} \sigma_i f(\alpha_i),$$

where the σ_i are the edge lengths and the α_i are the dihedral angles.

Dehn showed the necessity of the following (settling Hilbert’s third problem). The sufficiency was settled by Sydler in 1965.

Theorem (Dehn, Sydler)

Polytopes $P, Q \subset \mathbb{R}^3$ are equidissectable under D_3 iff all their Dehn invariants are the same. It is easy to see that every Dehn invariant of the standard cube is zero while every Dehn invariant of the regular tetrahedron is non-zero.

There is a great back story to this: This, unknown to Hilbert had been proposed by Władysław Kretkowski in 1882 for a prize contest in Krakow and solved by Ludwig Birkenmajer in 1884. "Equidecomposability of Polyhedra: A Solution of Hilbert’s Third Problem in Kraków before ICM 1900", Mathematical Intelligencer, https://link.springer.com/article/10.1007
What Dehn showed is: There are valuations on polytopes in \mathbb{R}^3 other than the volume.
What Dehn showed is: There are valuations on polytopes in \mathbb{R}^3 other than the volume.

There are many problems related to Hilbert’s third problem that are still open. The most important one is:

Question

Does the Dehn-Sydler theorem hold in spherical or hyperbolic geometry?
What Dehn showed is: There are valuations on polytopes in \mathbb{R}^3 other than the volume.

There are many problems related to Hilbert’s third problem that are still open. The most important one is:

Question

Does the Dehn-Sydler theorem hold in spherical or hyperbolic geometry?

Some related results: Two sets are equidecomposable (as opposed to equidissectable) if they can be partitioned into D_2 congruent sets.

Theorem (Laczkovich)

Two plane polygons of equal area are equidecomposable: Indeed, one only needs to take translations in place of D_2.
What Dehn showed is: There are valuations on polytopes in \mathbb{R}^3 other than the volume.

There are many problems related to Hilbert’s third problem that are still open. The most important one is:

Question

Does the Dehn-Sydler theorem hold in spherical or hyperbolic geometry?

Some related results: Two sets are equidecomposable (as opposed to equidissectable) if they can be partitioned into D_2 congruent sets.

Theorem (Laczkovich)

Two plane polygons of equal area are equidecomposable: Indeed, one only needs to take translations in place of D_2.

A circular disk and a square of the same area are equidecomposable, even under the group of translations.
What Dehn showed is: There are valuations on polytopes in \mathbb{R}^3 other than the volume.

There are many problems related to Hilbert’s third problem that are still open. The most important one is:

Question

Does the Dehn-Sydler theorem hold in spherical or hyperbolic geometry?

Some related results: Two sets are equidecomposable (as opposed to equidissectable) if they can be partitioned into D_2 congruent sets.

Theorem (Laczkovich)

Two plane polygons of equal area are equidecomposable: Indeed, one only needs to take translations in place of D_2.

A circular disk and a square of the same area are equidecomposable, even under the group of translations.

And of course, we have the Banach-Tarski paradox.

Theorem

Any two bounded sets $X, Y \subset \mathbb{R}^n$ with non-empty interior, for $n \geq 3$ are equidecomposable.
Valuations

Hadwiger’s theorem

Given $A \in \mathbb{K}^d$, the Steiner polynomial is the polynomial given by

$$|A + xB|_d^2 = d \sum_{k=0}^{d} S_k x^k.$$

The coefficients are called Quermassintegrals and are equal to the V_k up to a scaling.

Hadwiger’s theorem says

Theorem

The collection of all continuous rigid motion invariant valuations on \mathbb{K}^d is a $d+1$ dimensional vector space, spanned by the coefficients of the Steiner Polynomial.

In an earlier paper that motivated Hadwiger’s work, Blaschke characterized continuous valuations on \mathbb{K}^d that are $SL(d)$ and translation invariant.

Theorem (Blaschke)

Any such valuation is a linear combination of 1 and S_0. (Note that S_0 is the volume).

The study of valuations that take values in other semigroups is a beautiful and well developed area.
Given $A \in \mathcal{K}_d$, the Steiner polynomial is the polynomial given by

$$|A + xB_2^d| = \sum_{k=0}^{d} S_k x^k.$$

The coefficients are called *Quermassintegrals* and are equal to the V_k up to a scaling.

Hadwiger’s theorem

Theorem

The collection of all continuous rigid motion invariant valuations on \mathcal{K}_d is a $d+1$ dimensional vector space, spanned by the coefficients of the Steiner polynomial.

In an earlier paper that motivated Hadwiger’s work, Blaschke characterized continuous valuations on \mathcal{K}_d that are $\text{SL}(d)$ and translation invariant.

Theorem (Blaschke)

Any such valuation is a linear combination of 1 and S_0. (Note that S_0 is the volume).

The study of valuations that take values in other semigroups is a beautiful and well developed area.
Given $A \in \mathcal{K}_d$, the Steiner polynomial is the polynomial given by

$$|A + xB_2^d| = \sum_{k=0}^{d} S_k x^k.$$

The coefficients are called *Quermassintegrals* and are equal to the V_k upto a scaling.

Hadwiger’s theorem says

Theorem

The collection of all continuous rigid motion invariant valuations on \mathcal{K}_d is a $d + 1$ dimensional vector space, spanned by the coefficients of the Steiner Polynomial.
Given $A \in \mathcal{K}_d$, the Steiner polynomial is the polynomial given by

$$|A + xB_2^d| = \sum_{k=0}^{d} S_k x^k.$$

The coefficients are called *Quermassintegrals* and are equal to the V_k upto a scaling.

Hadwiger’s theorem says

Theorem

The collection of all continuous rigid motion invariant valuations on \mathcal{K}_d is a $d + 1$ dimensional vector space, spanned by the coefficients of the Steiner Polynomial.

In an earlier paper that motivated Hadwiger’s work, Blaschke characterized continuous valuations on \mathcal{K}_d that are $SL(d)$ and translation invariant.
Valuations

Hadwiger’s theorem

Given \(A \in \mathcal{K}_d \), the Steiner polynomial is the polynomial given by

\[
|A + xB^d_2| = \sum_{k=0}^{d} S_k x^k.
\]

The coefficients are called *Quermassintegrals* and are equal to the \(V_k \) up to a scaling.

Hadwiger’s theorem says

Theorem

The collection of all continuous rigid motion invariant valuations on \(\mathcal{K}_d \) is a \(d + 1 \) dimensional vector space, spanned by the coefficients of the Steiner Polynomial.

In an earlier paper that motivated Hadwiger’s work, Blaschke characterized continuous valuations on \(\mathcal{K}_d \) that are \(SL(d) \) and translation invariant.

Theorem (Blaschke)

Any such valuation is a linear combination of 1 and \(S_0 \). *(Note that \(S_0 \) is the volume).*
Given \(A \in K_d \), the Steiner polynomial is the polynomial given by

\[
|A + xB_2^d| = \sum_{k=0}^{d} S_k x^k.
\]

The coefficients are called *Quermassintegrals* and are equal to the \(V_k \) up to a scaling.

Hadwiger’s theorem says

Theorem

The collection of all continuous rigid motion invariant valuations on \(K_d \) is a \(d + 1 \) dimensional vector space, spanned by the coefficients of the Steiner Polynomial.

In an earlier paper that motivated Hadwiger’s work, Blaschke characterized continuous valuations on \(K_d \) that are \(SL(d) \) and translation invariant.

Theorem (Blaschke)

Any such valuation is a linear combination of 1 and \(S_0 \). (Note that \(S_0 \) is the volume).

The study of valuations that take values in other semigroups is a beautiful and well developed area.
Let \mathcal{L} be a lattice in \mathbb{R}^d: We will assume that $\mathcal{L} = \mathbb{Z}^d$.
Let \(\mathcal{L} \) be a lattice in \(\mathbb{R}^d \): We will assume that \(\mathcal{L} = \mathbb{Z}^d \).

The natural question here is: What are the translation invariant and \(SL(d) \) invariant valuations?
Valuations on Lattice Polytopes

Let \mathcal{L} be a lattice in \mathbb{R}^d: We will assume that $\mathcal{L} = \mathbb{Z}^d$.

The natural question here is: What are the translation invariant and $SL(d)$ invariant valuations?

This has a beautiful and clean answer. To do this, let us introduce the Ehrhart polynomial of a lattice polytope. Let \mathcal{L}_d be the set of all lattice polytopes in \mathbb{Z}^d. Theorem (Ehrhart's theorem)

Let P be a lattice polytope: Then there is a polynomial $Ehr(P)$ of degree equal to the affine dimension of P such that $Ehr(P)(n) = |nP \cap \mathbb{Z}^d|$, where $|A|$ is the number of lattice points in A. This polynomial has rational coefficients.

If we write $Ehr(P)(x) = \sum_{k=0}^{d} E_k(P) x^k$, we see that E_d is the volume and $E_0 = 1$.

Mohan Ravichandran, Bogazici, Istanbul

Generalized Permutohedra: Ehrhart Positivity and Minkowski Linear Functionals

8 / 28
Let \mathcal{L} be a lattice in \mathbb{R}^d: We will assume that $\mathcal{L} = \mathbb{Z}^d$.

The natural question here is: What are the translation invariant and $SL(d)$ invariant valuations?

This has a beautiful and clean answer. To do this, let us introduce the Ehrhart polynomial of a lattice polytope. Let \mathcal{L}_d be the set of all lattice polytopes in \mathbb{Z}^d.

Theorem (Ehrhart’s theorem)

Let P be a lattice polytope: Then there is a polynomial Ehr_P of degree equal to the affine dimension of P such that

$$Ehr_P(n) = |nP \cap \mathbb{Z}^d|,$$

where $|A|$ is the number of lattice points in A. This polynomial has rational coefficients.
Let \mathcal{L} be a lattice in \mathbb{R}^d: We will assume that $\mathcal{L} = \mathbb{Z}^d$.

The natural question here is: What are the translation invariant and $SL(d)$ invariant valuations?

This has a beautiful and clean answer. To do this, let us introduce the Ehrhart polynomial of a lattice polytope. Let \mathcal{L}_d be the set of all lattice polytopes in \mathbb{Z}^d.

Theorem (Ehrhart’s theorem)

Let P be a lattice polytope: Then there is a polynomial Ehr_P of degree equal to the affine dimension of P such that

$$\text{Ehr}_P(n) = |nP \cap \mathbb{Z}^d|,$$

where $|A|$ is the number of lattice points in A. This polynomial has rational coefficients.

If we write

$$\text{Ehr}_P(x) = \sum_{k=0}^{d} E_k(P)x^k,$$

we see that E_d is the volume and $E_0 = 1$.
Let B_d be the d dimensional box. Then

$$Ehr_{B_d}(x) = (x + 1)^d.$$
Some Ehrhart polynomials

Let B_d be the d dimensional box. Then

$$\text{Ehr}_{B_d}(x) = (x + 1)^d.$$

Let S_d be the d simplex: The convex hull of e_1, \ldots, e_{d+1} in \mathbb{R}^{d+1}. Then

$$\text{Ehr}_{S_d}(x) = \binom{d + x}{d} = \frac{(d + x)(d + x - 1) \ldots (x + 1)}{d!}.$$
Some Ehrhart polynomials

Let B_d be the d dimensional box. Then

$$Ehr_{B_d}(x) = (x + 1)^d.$$

Let S_d be the d simplex: The convex hull of e_1, \ldots, e_{d+1} in \mathbb{R}^{d+1}. Then

$$Ehr_{S_d}(x) = \binom{d+x}{d} = \frac{(d+x)(d+x-1)\cdots(x+1)}{d!}.$$

Surely the coefficients of the Ehrhart polynomial of any lattice are non-negative?
Some Ehrhart polynomials

Let B_d be the d dimensional box. Then

$$Ehr_{B_d}(x) = (x + 1)^d.$$

Let S_d be the d simplex: The convex hull of e_1, \ldots, e_{d+1} in \mathbb{R}^{d+1}. Then

$$Ehr_{S_d}(x) = \binom{d + x}{d} = \frac{(d + x)(d + x - 1) \ldots (x + 1)}{d!}.$$

Surely the coefficients of the Ehrhart polynomial of any lattice are non-negative?

Rather surprisingly this is false. The Reeve Tetrahedron is

$$R_t := \text{conv}\{(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, r)\}.$$
Some Ehrhart polynomials

Let B_d be the d dimensional box. Then

$$Ehr_{B_d}(x) = (x + 1)^d.$$

Let S_d be the d simplex: The convex hull of e_1, \ldots, e_{d+1} in \mathbb{R}^{d+1}. Then

$$Ehr_{S_d}(x) = \binom{d+x}{d} = \frac{(d+x)(d+x-1)\ldots(x+1)}{d!}.$$

Surely the coefficients of the Ehrhart polynomial of any lattice are non-negative?

Rather surprisingly this is false. The **Reeve Tetrahedron** is

$$R_t := \text{conv}\{(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, r)\}.$$

This was introduced by John Reeve in 1902 to show that there is no analogue of Pick’s theorem in higher dimensions. There are no lattice points in the Reeve tetrahedron apart from the vertices but the volume is $r/6$ which can be arbitrarily large.

$$Ehr_{R_t} = \frac{rt^3}{6} + t^2 + \left(2 - \frac{r}{6}\right)t + 1.$$
Betke and Kneser proved the following beautiful analogue of Hadwiger’s theorem.

Theorem (Betke-Kneser)

Any \(SL(d) \) and translation invariant valuation on \(L_d \) is a linear combination of the coefficients of the Ehrhart polynomial.
The Betke-Kneser theorem

Betke and Kneser proved the following beautiful analogue of Hadwiger’s theorem.

Theorem (Betke-Kneser)

Any SL(d) and translation invariant valuation on \mathcal{L}_d is a linear combination of the coefficients of the Ehrhart polynomial.

Stanley in 1974 showed that the usual monomial basis is **not the best basis** to write the Ehrhart polynomial in.

Theorem (Stanley)

Let P be a lattice polynomial of dimension d. Then, there are natural numbers h_0^, \ldots, h_d^* such that*

$$
\text{Ehr}(n) = h_0^* \binom{n + d}{d} + h_1^* \binom{n + d - 1}{d} + \ldots + h_d^* \binom{n}{d}.
$$
Betke and Kneser proved the following beautiful analogue of Hadwiger’s theorem.

Theorem (Betke-Kneser)

Any $SL(d)$ and translation invariant valuation on \mathcal{L}_d is a linear combination of the coefficients of the Ehrhart polynomial.

Stanley in 1974 showed that the usual monomial basis is **not the best basis** to write the Ehrhart polynomial in.

Theorem (Stanley)

Let P be a lattice polynomial of dimension d. Then, there are natural numbers h_0^*, \ldots, h_d^* such that

$$Ehr(n) = h_0^* \binom{n + d}{d} + h_1^* \binom{n + d - 1}{d} + \ldots + h_d^* \binom{n}{d}.$$

Note that the elements of the h^* vector are not valuations: The h^* vector depends upon the dimension of the polytope.
In 1977, Peter McMullen proved a far reaching generalization of the Betke-Kneser theorem.
In 1977, Peter McMullen proved a far reaching generalization of the Betke-Kneser theorem.

Theorem (McMullen)

Let \(\phi : \mathcal{L}_d \to \mathbb{R} \) be a translation invariant valuation. Then there is a polynomial \(\varphi_P \) of degree at most the affine dimension of \(P \) such that

\[
\varphi_P(n) = \phi(nP), \quad \forall n \in \mathbb{N} \cup \{0\}.
\]
In 1977, Peter McMullen proved a far reaching generalization of the Betke-Kneser theorem.

Theorem (McMullen)

Let $\phi : \mathcal{L}_d \to \mathbb{R}$ be a translation invariant valuation. Then there is a polynomial φ_P of degree at most the affine dimension of P such that

$$
\varphi_P(n) = \phi(nP), \quad \forall n \in \mathbb{N} \cup \{0\}.
$$

- The theorem also holds when we replace the range space \mathbb{R} by any group G. (The notion of a polynomial is appropriately defined).
- It also works when we replace lattice polytopes by general polytopes and consider \mathbb{R}^d translation invariant valuations.
In 1977, Peter McMullen proved a far reaching generalization of the Betke-Kneser theorem.

Theorem (McMullen)

Let $\phi : \mathcal{L}_d \to \mathbb{R}$ be a translation invariant valuation. Then there is a polynomial φ_P of degree at most the affine dimension of P such that

$$\varphi_P(n) = \phi(nP), \quad \forall n \in \mathbb{N} \cup \{0\}.$$

- The theorem also holds when we replace the range space \mathbb{R} by any group G. (The notion of a polynomial is appropriately defined).
- It also works when we replace lattice polytopes by general polytopes and consider \mathbb{R}^d translation invariant valuations.
The Euler Characteristic

Instead of considering valuations on convex sets, may we consider valuations on the larger class of \textbf{PolyConvex} sets.

\textbf{Definition}

A relatively open polyhedron is a polyhedral convex set that is open in the affine space that it lies in. A polyconvex set is a finite union of relatively open polyhedra. In practical terms, a polyconvex set is a disjoint union of finitely many sets that are polyhedra with the interiors of certain facets removed.

The most important valuation by far is the following.

\textbf{Theorem}

There is a unique integer valued valuation on polyconvex sets in \(\mathbb{R}^d \) which assigns the value 1 to every (closed) polytope. This valuation is called the Euler Characteristic.
Instead of considering valuations on convex sets, may we consider valuations on the larger class of **PolyConvex** sets.

Definition

A relatively open polyhedron is a polyhedral convex set that is open in the affine space that it lies in. A polyconvex set is a finite union of relatively open polyhedra.

Theorem

There is a unique integer valued valuation on polyconvex sets in \mathbb{R}^d which assigns the value 1 to every (closed) polytope. This valuation is called the **Euler Characteristic**.
Instead of considering valuations on convex sets, may we consider valuations on the larger class of PolyConvex sets.

Definition
A relatively open polyhedron is a polyhedral convex set that is open in the affine space that it lies in. A polyconvex set is a finite union of relatively open polyhedra.

In practical terms, a polyconvex set is a disjoint union of finitely many sets that are polyhedra with the interiors of certain facets removed.
Instead of considering valuations on convex sets, may we consider valuations on the larger class of PolyConvex sets.

Definition

A relatively open polyhedron is a polyhedral convex set that is open in the affine space that it lies in. A polyconvex set is a finite union of relatively open polyhedra.

In practical terms, a polyconvex set is a disjoint union of finitely many sets that are polyhedra with the interiors of certain facets removed.

The most important valuation by far is the following.

Theorem

There is a unique integer valued valuation on polyconvex sets in \mathbb{R}^d which assigns the value 1 to every (closed) polytope. This valuation is called the Euler Characteristic.
Instead of considering valuations on convex sets, may we consider valuations on the larger class of PolyConvex sets.

Definition

A relatively open polyhedron is a polyhedral convex set that is open in the affine space that it lies in. A polyconvex set is a finite union of relatively open polyhedra.

In practical terms, a polyconvex set is a disjoint union of finitely many sets that are polyhedra with the interiors of certain facets removed.

The most important valuation by far is the following.

Theorem

There is a unique integer valued valuation on polyconvex sets in \(\mathbb{R}^d \) which assigns the value 1 to every (closed) polytope. This valuation is called the Euler Characteristic.
Instead of considering valuations on convex sets, may we consider valuations on the larger class of PolyConvex sets.

Definition

A relatively open polyhedron is a polyhedral convex set that is open in the affine space that it lies in. A polyconvex set is a finite union of relatively open polyhedra.

In practical terms, a polyconvex set is a disjoint union of finitely many sets that are polyhedra with the interiors of certain facets removed.

The most important valuation by far is the following.

Theorem

There is a unique integer valued valuation on polyconvex sets in \mathbb{R}^d which assigns the value 1 to every (closed) polytope. This valuation is called the Euler Characteristic.
The Ehrhart polynomial of a lattice polytope, Ehr_P, makes geometric sense when evaluated on the non-negative integers. It is a fundamental fact that $Ehr_P(-n)$ has a natural meaning as well.
The Ehrhart polynomial of a lattice polytope, Ehr_P, makes geometric sense when evaluated on the non-negative integers. It is a fundamental fact that $\text{Ehr}_P(-n)$ has a natural meaning as well.

Theorem (Macdonald)

Let $P \in \mathcal{L}_d$. Then

$$\text{Ehr}_P(-n) = (-1)^{\dim(P)} \text{Ehr}_{P^\circ}(n),$$

where P° is the relative interior of P.

This was conjectured by Ehrhart and proved by him in several cases. The full proof was given by Ian Macdonald in 1971.
The Ehrhart polynomial of a lattice polytope, Ehr_P makes geometric sense when evaluated on the non-negative integers. It is a fundamental fact that $\text{Ehr}_P(-n)$ has a natural meaning as well.

Theorem (Macdonald)

Let $P \in \mathcal{L}_d$. Then

$$\text{Ehr}_P(-n) = (-1)^{\dim(P)} \text{Ehr}_{P^\circ}(n),$$

where P° is the relative interior of P.

This was conjectured by Ehrhart and proved by him in several cases. The full proof was given by Ian Macdonald in 1971.

This theorem was generalized by McMullen to all translation invariant valuations.

Theorem (McMullen)

Let ϕ be a valuation on \mathcal{L}_d. Then

$$\varphi_P(-n) = \sum_{F \subseteq P} (-1)^{\dim(F)} \varphi_F(n).$$
Recall the definition of the Ehrhart polynomial,

\[E_{nP}(n) = |nP \cap \mathbb{Z}^d|, \]

Question

Which lattice polytopes have Ehrhart polynomials with non-negative coefficients?
Recall the definition of the Ehrhart polynomial,

\[Ehr_P(n) = |nP \cap \mathbb{Z}^d|, \]

Question
Which lattice polytopes have Ehrhart polynomials with non-negative coefficients?

This is a well studied problem and an active current area of research. We summarize some results here.
Recall the definition of the Ehrhart polynomial,

\[\text{Ehr}_P(n) = |nP \cap \mathbb{Z}^d|, \]

Question

Which lattice polytopes have Ehrhart polynomials with non-negative coefficients?

This is a well studied problem and an active current area of research. We summarize some results here.

To any polytope, we may consider its lattice of faces, that is the inclusion ordered Poset of faces. Two polytopes are said to be combinatorially equivalent if they have isomorphic face lattices.

Theorem (Liu, 2009)

Any lattice polytope is combinatorially equivalent to a lattice polytope that is Ehrhart positive.
Recall the definition of the Ehrhart polynomial,

$$Ehr_P(n) = |nP \cap \mathbb{Z}^d|,$$

Question

Which lattice polytopes have Ehrhart polynomials with non-negative coefficients?

This is a well studied problem and an active current area of research. We summarize some results here.

To any polytope, we may consider its lattice of faces, that is the inclusion ordered Poset of faces. Two polytopes are said to be combinatorially equivalent if they have isomorphic face lattices.

Theorem (Liu, 2009)

Any lattice polytope is combinatorially equivalent to a lattice polytope that is Ehrhart positive.

For instance, the Reeve tetrahedron and the standard tetrahedron are combinatorially equivalent and the latter is easily seen to be Ehrhart positive (by a simple explicit computation for instance).
Recall the definition of the Ehrhart polynomial,

\[\text{Ehr}_P(n) = |nP \cap \mathbb{Z}^d|, \]

\[\text{Ehr}_P(n) = |nP \cap \mathbb{Z}^d|, \]

Question

Which lattice polytopes have Ehrhart polynomials with non-negative coefficients?

This is a well studied problem and an active current area of research. We summarize some results here.

To any polytope, we may consider its lattice of faces, that is the inclusion ordered Poset of faces. Two polytopes are said to be combinatorially equivalent if they have isomorphic face lattices.

Theorem (Liu, 2009)

Any lattice polytope is combinatorially equivalent to a lattice polytope that is Ehrhart positive.

For instance, the Reeve tetrahedron and the standard tetrahedron are combinatorially equivalent and the latter is easily seen to be Ehrhart positive (by a simple explicit computation for instance).

This shows that Ehrhart Positivity is not a combinatorial property, but a geometric one.
Given a vector $a = (a_1, \ldots, a_d) \in \mathbb{N}^d$, the associated Stanley-Pitman polytope is

$$PS_d(a) = \{x \in \mathbb{R}_{\geq 0}^d \mid \sum_{j=1}^i x_i \leq \sum_{j=1}^i a_i, \ i \in [d]\}.$$

Pitman and Stanley gave an exact formula for the Ehrhart polynomial, writing it as a sum of a product of binomial coefficients.
Given a vector $a = (a_1, \ldots, a_d) \in \mathbb{N}^d$, the associated Stanley-Pitman polytope is

$$PS_d(a) = \{ x \in \mathbb{R}^d_{\geq 0} \mid \sum_{j=1}^{i} x_i \leq \sum_{j=1}^{i} a_i, \ i \in [d] \}.$$

Pitman and Stanley gave an exact formula for the Ehrhart polynomial, writing it as a sum of a product of binomial coefficients.

The larger class of *Flow Polytopes* are also Ehrhart positive. This fact uses a formula for the Ehrhart polynomial in terms of the Kostant partition functions from representation theory.
Given a vector $a = (a_1, \ldots, a_d) \in \mathbb{N}^d$, the associated Stanley-Pitman polytope is

$$PS_d(a) = \{ x \in \mathbb{R}^{d}_{\geq 0} \mid \sum_{j=1}^{i} x_i \leq \sum_{j=1}^{i} a_i, \ i \in [d] \}.$$

Pitman and Stanley gave an exact formula for the Ehrhart polynomial, writing it as a sum of a product of binomial coefficients.

The larger class of \textit{Flow Polytopes} are also Ehrhart positive. This fact uses a formula for the Ehrhart polynomial in terms of the Kostant partition functions from representation theory.

Crosspolytopes and several derived polytopes are Ehrhart positive: This uses an interesting fact, namely that their Ehrhart polynomials have roots on S^1. That this implies positivity is easy to see.
Zonotopes are Minkowski sums of line segments,

\[Z = \sum_{i=1}^{m} [0, v_i], \]

where the \(v_i \in \mathbb{Z}^d \). In this case, the coefficients of the Ehrhart polynomial have meaning.
Zonotopes are Minkowski sums of line segments,

$$Z = \sum_{i=1}^{m} [0, v_i],$$

where the $v_i \in \mathbb{Z}^d$. In this case, the coefficients of the Ehrhart polynomial have meaning.

Theorem (Stanley)

The coefficient of t^k in Ehr_Z is

$$\sum_{X} h(X),$$

where X is the collection of all linearly independent size k subsets and $h(X)$ is the gcd of all $k \times k$ minors of the matrix whose column vectors are the elements in X.

Mohan Ravichandran, Bogazici, Istanbul

Generalized Permutohedra: Ehrhart Positivity and Minkowski Linear Functionals
Zonotopes are Minkowski sums of line segments,

\[Z = \sum_{i=1}^{m} [0, v_i], \]

where the \(v_i \in \mathbb{Z}^d \). In this case, the coefficients of the Ehrhart polynomial have meaning.

Theorem (Stanley)

The coefficient of \(t^k \) in \(\text{Ehr}_Z \) is

\[\sum_{X} h(X), \]

where \(X \) is the collection of all linearly independent size \(k \) subsets and \(h(X) \) is the gcd of all \(k \times k \) minors of the matrix whose column vectors are the elements in \(X \).

The most important Zonotope (and perhaps polytope) is the Regular Permutohedron,

\[\Pi_d = \text{conv}\{(\sigma(1), \ldots, \sigma(d + 1)) : \sigma \in S_{d+1}\} = \sum_{i<j} [0, e_j - e_i]. \]
Zonotopes

Zonotopes are Minkowski sums of line segments,

\[Z = \sum_{i=1}^{m} [0, v_i], \]

where the \(v_i \in \mathbb{Z}^d \). In this case, the coefficients of the Ehrhart polynomial have meaning.

Theorem (Stanley)

The coefficient of \(t^k \) in \(\text{Ehr}_Z \) is

\[\sum_X h(X), \]

where \(X \) is the collection of all linearly independent size \(k \) subsets and \(h(X) \) is the gcd of all \(k \times k \) minors of the matrix whose column vectors are the elements in \(X \).

The most important Zonotope (and perhaps polytope) is the *Regular Permutohedron*,

\[\Pi_d = \text{conv}\{ (\sigma(1), \ldots, \sigma(d+1)) : \sigma \in S_{d+1} \} = \sum_{i<j} [0, e_j - e_i]. \]

Stanley’s theorem specializes to: \(E_Z(k) \) is the \# forests on \([d + 1]\) with exactly \(d + 1 - k \) trees.
A matroid M is a finite set X and a collection of subsets T (called independent sets) which are
1. Downward closed.
2. For every $e \in T$ and $i \in X \setminus e$, there is a $j \in e$ such that $e \cup i \setminus \{j\} \in T$.

The matroid (base) polytope is $P_M = \text{conv}\{e \in B\}$.

For instance, the following are Linear Programs over Matroid Polytopes.
1. The Travelling Salesman problem,
2. Finding maximum weight matchings in graphs,
3. Finding maximum flows in graphs,

Theorem (Fundamental Meta-theorem of Combinatorial Optimization)
Optimization problems where the associated matroid polytopes have compact facet description are tractable. If a problem is intractable, then the corresponding matroid polytope has complex facet structure.
A matroid M is a finite set X and a collection of subsets T (called independent sets) which are

1. Downward closed.

2. For every $e \in T$ and $i \in X \setminus e$, there is a $j \in e$ such that $e \cup i \setminus \{j\} \in T$.

All maximal independent sets in a matroid have the same cardinality and these sets are called the bases of the matroid and denoted by $B(M)$.
Matroid Polytopes

A matroid M is a finite set X and a collection of subsets T (called independent sets) which are

1. Downward closed.
2. For every $e \in T$ and $i \in X \setminus e$, there is a $j \in e$ such that $e \cup i \setminus \{j\} \in T$.

All maximal independent sets in a matroid have the same cardinality and these sets are called the bases of the matroid and denoted by $B(M)$.

The matroid (base) polytope is

$$P_M = \text{conv}\{e \in B\}.$$
A matroid M is a finite set X and a collection of subsets T (called independent sets) which are

1. Downward closed.
2. For every $e \in T$ and $i \in X \setminus e$, there is a $j \in e$ such that $e \cup i \setminus \{j\} \in T$.

All maximal independent sets in a matroid have the same cardinality and these sets are called the bases of the matroid and denoted by $\mathcal{B}(M)$.

The matroid (base) polytope is

$$P_M = \text{conv}\{e \in \mathcal{B}\}.$$

For instance, the following are Linear Programs over Matroid Polytopes.

1. The Travelling Salesman problem,
2. Finding maximum weight matchings in graphs,
3. Finding maximum flows in graphs,
A matroid M is a finite set X and a collection of subsets T (called independent sets) which are

1. Downward closed.
2. For every $e \in T$ and $i \in X \setminus e$, there is a $j \in e$ such that $e \cup i \setminus \{j\} \in T$.

All maximal independent sets in a matroid have the same cardinality and these sets are called the bases of the matroid and denoted by $\mathcal{B}(M)$.

The matroid (base) polytope is

$$P_M = \text{conv}\{ e \in \mathcal{B} \}.$$

For instance, the following are Linear Programs over Matroid Polytopes.

1. The Travelling Salesman problem,
2. Finding maximum weight matchings in graphs,
3. Finding maximum flows in graphs,

Theorem (Fundamental Meta-theorem of Combinatorial Optimization)

Optimization problems where the associated matroid polytopes have compact facet description are tractable. If a problem is intractable, then the corresponding matroid polytope has complex facet structure.
Conjecture (De Leora et. al. 2007)

Matroid polytopes are Ehrhart Positive.
Conjecture (De Leora et. al. 2007)

Matroid polytopes are Ehrhart Positive.

In 2007, Alexander Postnikov came up with a highly influential class of polytopes, which he called Generalized Permutohedra.
Conjecture (De Leora et. al. 2007)

Matroid polytopes are Ehrhart Positive.

In 2007, Alexander Postnikov came up with a highly influential class of polytopes, which he called *Generalized Permutohedra.*

Definition (Regular and Generalized Permutohedra)

Given $\alpha = (\alpha_1, \ldots, \alpha_{d+1}) \in \mathbb{R}^{d+1}$, the associated permutohedron is

$$\Pi_\alpha = \text{conv}\{(\alpha_{\sigma(1)}, \ldots, \alpha_{\sigma(d+1)}) : \sigma \in S_{d+1}\}.$$

A generalized permutohedron is a polytope obtained by making parallel translates of facets of a regular permutohedron. Note that some vertices may vanish.
Conjecture (De Leora et. al. 2007)

Matroid polytopes are Ehrhart Positive.

In 2007, Alexander Postnikov came up with a highly influential class of polytopes, which he called Generalized Permutohedra.

Definition (Regular and Generalized Permutohedra)

Given $\alpha = (\alpha_1, \ldots, \alpha_{d+1}) \in \mathbb{R}^{d+1}$, the associated permutohedron is

$$\Pi_\alpha = \text{conv}\{ (\alpha_{\sigma(1)}, \ldots, \alpha_{\sigma(d+1)}) : \sigma \in S_{d+1} \}.$$

A generalized permutohedron is a polytope obtained by making parallel translates of facets of a regular permutohedron. Note that some vertices may vanish.

An alternate definition is the following: A generalized permutohedron is any polytope whose normal fan is the coarsening of the normal fan of a permutohedron.
Generalized Permutohedra

Conjecture (De Leora et. al. 2007)

Matroid polytopes are Ehrhart Positive.

In 2007, Alexander Postnikov came up with a highly influential class of polytopes, which he called Generalized Permutohedra.

Definition (Regular and Generalized Permutohedra)

Given $\alpha = (\alpha_1, \ldots, \alpha_{d+1}) \in \mathbb{R}^{d+1}$, the associated permutohedron is

$$\Pi_\alpha = \text{conv}\{(\alpha_{\sigma(1)}, \ldots, \alpha_{\sigma(d+1)}) : \sigma \in S_{d+1}\}.$$

A generalized permutohedron is a polytope obtained by making parallel translates of facets of a regular permutohedron. Note that some vertices may vanish.

An alternate definition is the following: A generalized permutohedron is any polytope whose normal fan is the coarsening of the normal fan of a permutohedron.

Yet another definition is the following: A polytope P is a generalized permutohedron if there is another polytopes Q such that $P + Q = \lambda \Pi_d$. In other words, P is a weak Minkowski summand of Π_d.
Another very useful characterization of generalized permutohedra uses submodular functions.
Another very useful characterization of generalized permutohedra uses submodular functions.

Definition

A function f defined on subsets of $[d]$ is called submodular if for any $S \subset T \subset [n]$ and i not in T,

$$f(T \cup \{i\}) - f(T) \leq f(S \cup \{i\}) - f(S).$$

A function is supermodular if the reverse inequality holds.
Another very useful characterization of generalized permutohedra uses submodular functions.

Definition

A function \(f \) defined on subsets of \([d]\) is called submodular if for any \(S \subset T \subset [n] \) and \(i \) not in \(T \),

\[
f(T \cup \{i\}) - f(T) \leq f(S \cup \{i\}) - f(S).
\]

A function is supermodular if the reverse inequality holds.

For every vector \(\{z_I\}_{I \subseteq [d]} \in \mathbb{R}^{2^d} \) with \(z_\emptyset = 0 \) let

\[
P(\{z_I\}) = \left\{ x \in \mathbb{R}^d : \sum_{i=1}^{d} x_i = z_{[d]}, \sum_{i \in I} x_i \geq z_I \text{ for all } \emptyset \subseteq I \subset [d] \right\},
\]
Another very useful characterization of generalized permutohedra uses submodular functions.

Definition

A function f defined on subsets of $[d]$ is called submodular if for any $S \subset T \subset [n]$ and i not in T,

$$f(T \cup \{i\}) - f(T) \leq f(S \cup \{i\}) - f(S).$$

A function is supermodular if the reverse inequality holds.

For every vector $\{z_I\}_{I \subseteq [d]} \in \mathbb{R}^{2^d}$ with $z_{\emptyset} = 0$ let

$$P(\{z_I\}) = \left\{ x \in \mathbb{R}^d : \sum_{i=1}^d x_i = z_{[d]} , \sum_{i \in I} x_i \geq z_I \text{ for all } \emptyset \subseteq I \subset [d] \right\},$$

Theorem (Postnikov)

*The polytope $P(\{z_I\})$ is a generalized permutahedron if and only if the $\{z_I\}_{I \subseteq [d]}$ define a supermodular function $2^d \rightarrow \mathbb{R}$.***
Another very useful characterization of generalized permutohedra uses submodular functions.

Definition

A function f defined on subsets of $[d]$ is called submodular if for any $S \subset T \subset [n]$ and i not in T,

$$f(T \cup \{i\}) - f(T) \leq f(S \cup \{i\}) - f(S).$$

A function is supermodular if the reverse inequality holds.

For every vector $\{z_I\}_{I \subseteq [d]} \in \mathbb{R}^{2^d}$ with $z_\emptyset = 0$ let

$$P(\{z_I\}) = \left\{ x \in \mathbb{R}^d : \sum_{i=1}^d x_i = z_{[d]} , \sum_{i \in I} x_i \geq z_I \text{ for all } \emptyset \subseteq I \subset [d] \right\} ,$$

Theorem (Postnikov)

*The polytope $P(\{z_I\})$ is a generalized permutahedron if and only if the $\{z_I\}_{I \in [d]}$ define a supermodular function $2^d \rightarrow \mathbb{R}$.***

Theorem (Ardila, Benedetti, Doker)

Matroid base polytopes are Generalized Permutohedra.
Our proof uses three ideas. The first is a representation theorem for Generalized Permutohedra.
Our proof uses three ideas. The first is a representation theorem for Generalized Permutohedra.

Let $\Delta_\emptyset = \{0\}$ and for $\emptyset \neq I \subseteq [d]$ let

$$\Delta_I = \{e_i : i \in I\}$$

be the **standard simplices** where e_1, \ldots, e_d are the standard basis vectors in \mathbb{R}^d.

Theorem (Jochemko, Ravichandran, 2019) Let $\{y_I\}_{I \in [d]}$ be a vector of real numbers. Then the following are equivalent.

(i) The signed Minkowski sum $\sum_{I \subseteq [d]} y_I \Delta_I$ defines a generalized permutahedron.

(ii) For all 2-element subsets $E \in \binom{[d]}{2}$ and all $T \subseteq [d]$ such that $E \subseteq T$

$$\sum_{E \subseteq I \subseteq T} y_I \geq 0.$$

Further, every generalized permutohedron is of the above form. In particular, the collection of all coefficients $\{y_I\}_{I \in [d]}$ such that $\sum_{I \subseteq [d]} y_I \Delta_I$ defines a generalized permutahedron is a polyhedral cone. The inequalities are facet-defining.
Our proof uses three ideas. The first is a representation theorem for Generalized Permutohedra.

Let $\Delta_\emptyset = \{0\}$ and for $\emptyset \neq I \subseteq [d]$ let

$$\Delta_I = \{e_i : i \in I\}$$

be the **standard simplices** where e_1, \ldots, e_d are the standard basis vectors in \mathbb{R}^d.

Theorem (Jochemko, Ravichandran, 2019)

Let $\{y_I\}_{I \in [d]}$ be a vector of real numbers. Then the following are equivalent.

(i) The signed Minkowski sum $\sum_{I \subseteq [d]} y_I \Delta_I$ defines a generalized permutahedron.

(ii) For all 2-element subsets $E \in \binom{[d]}{2}$ and all $T \subseteq [d]$ such that $E \subseteq T$

$$\sum_{E \subseteq I \subseteq T} y_I \geq 0 . \quad (3.1)$$

Further, every generalized permutahedron is of the above form. In particular, the collection of all coefficients $\{y_I\}_{I \in [d]}$ such that $\sum_{I \subseteq [d]} y_I \Delta_I$ defines a generalized permutahedron is a polyhedral cone. The inequalities are facet-defining.
Characterization of Generalized Permutohedra via signed Minkowski sums

Our proof uses three ideas. The first is a representation theorem for Generalized Permutohedra.

Let $\Delta_\emptyset = \{0\}$ and for $\emptyset \neq I \subseteq [d]$ let

$$\Delta_I = \{e_i : i \in I\}$$

be the standard simplices where e_1, \ldots, e_d are the standard basis vectors in \mathbb{R}^d.

Theorem (Jochemko, Ravichandran, 2019)

Let $\{y_I\}_{I \subseteq [d]}$ be a vector of real numbers. Then the following are equivalent.

(i) The signed Minkowski sum $\sum_{I \subseteq [d]} y_I \Delta_I$ defines a generalized permutahedron.

(ii) For all 2-element subsets $E \in \binom{[d]}{2}$ and all $T \subseteq [d]$ such that $E \subseteq T$

$$\sum_{E \subseteq I \subseteq T} y_I \geq 0.$$ \hspace{1cm} (3.1)

Further, every generalized permutahedron is of the above form. In particular, the collection of all coefficients $\{y_I\}_{I \subseteq [d]}$ such that $\sum_{I \subseteq [d]} y_I \Delta_I$ defines a generalized permutahedron is a polyhedral cone. The inequalities are facet-defining.

This theorem uses the supermodular characterization of Permutohedra due to Postnikov together with a theorem of Schneider on facets of Minkowski sums of polytopes.
Our second contribution exploits a fundamental property of the linear term

Theorem (Ludwig)
The linear term of the Ehrhart polynomial is Minkowski linear.
The proof of this uses a deep theorem of McMullen that is a generalization of Ehrhart’s theorem

Theorem (McMullen)
Given lattice polytopes $P_1, \ldots, P_m \in \mathbb{Z}^d$, the function $(\mathbb{Z}^d \geq 0)^m \ni (k_1, \ldots, k_m) \rightarrow |k_1P_1 + \cdots + k_mP_m|$ agrees with a polynomial.

With this in hand, we can calculate the linear term of the Ehrhart polynomial of any generalized Permutohedron.

The linear term of the n-simplex is easily calculated to be $E(\Delta_{i+1}) = 1 + \frac{1}{2} + \cdots + \frac{1}{i} =: h_i$.

Mohan Ravichandran, Bogazici, Istanbul
The Linear term is Minkowski Linear

Our second contribution exploits a fundamental property of the linear term

Theorem (Ludwig)

The linear term of the Ehrhart polynomial is Minkowski linear.
The linear term is Minkowski Linear

Our second contribution exploits a fundamental property of the linear term.

Theorem (Ludwig)

The linear term of the Ehrhart polynomial is Minkowski linear.

The proof of this uses a deep theorem of McMullen that is a generalization of Ehrhart’s theorem.

Theorem (McMullen)

Given lattice polytopes $P_1, \ldots, P_m \in \mathbb{Z}^d$, the function

$$(\mathbb{Z}_{\geq 0})^m \ni (k_1, \ldots, k_m) \rightarrow |k_1 P_1 + \ldots + k_m P_m|$$

agrees with a polynomial.
The Linear term is Minkowski Linear

Our second contribution exploits a fundamental property of the linear term

Theorem (Ludwig)

The linear term of the Ehrhart polynomial is Minkowski linear.

The proof of this uses a deep theorem of McMullen that is a generalization of Ehrhart’s theorem

Theorem (McMullen)

*Given lattice polytopes $P_1, \ldots, P_m \in \mathbb{Z}^d$, the function

$$(\mathbb{Z}_{\geq 0})^m \ni (k_1, \ldots, k_m) \rightarrow |k_1 P_1 + \ldots + k_m P_m|$$

agrees with a polynomial.*

With this in hand, we can calculate the linear term of the Ehrhart polynomial of any generalized Permutohedron.
Our second contribution exploits a fundamental property of the linear term.

Theorem (Ludwig)

The linear term of the Ehrhart polynomial is Minkowski linear.

The proof of this uses a deep theorem of McMullen that is a generalization of Ehrhart's theorem.

Theorem (McMullen)

*Given lattice polytopes $P_1, \ldots, P_m \in \mathbb{Z}^d$, the function

\[
(\mathbb{Z}_{\geq 0})^m \ni (k_1, \ldots, k_m) \rightarrow |k_1 P_1 + \ldots + k_m P_m|
\]

agrees with a polynomial.*

With this in hand, we can calculate the linear term of the Ehrhart polynomial of any generalized Permutohedron.

The linear term of the n simplex is easily calculated to be

\[
\mathcal{E}(\Delta_{i+1}) = 1 + \frac{1}{2} + \cdots + \frac{1}{i} =: h_i
\]
For any 2-element subset $E \in \binom{[d]}{2}$ and any $T \subseteq [d]$ such that $E \subseteq T$ let v^T_E be the Minkowski linear functional defined by

$$v^T_E(\Delta_I) = \begin{cases} 1 & \text{if } E \subseteq I \subseteq T, \\ 0 & \text{otherwise.} \end{cases}$$

We characterize all positive, translation-invariant Minkowski linear functionals on \mathcal{P}_d.

Proposition

Let $\varphi: \mathcal{P}_d \to \mathbb{R}$ be a Minkowski linear functional. Then φ is positive and translation-invariant if and only if there are nonnegative real numbers c^T_E such that

$$\varphi = \sum_{E \in \binom{[d]}{2}} \sum_{T \supseteq E} c^T_E v^T_E.$$

In particular, the family of positive, translation-invariant Minkowski linear functionals is a polyhedral cone with rays v^T_E.
For any 2-element subset $E \in \binom{[d]}{2}$ and any $T \subseteq [d]$ such that $E \subseteq T$ let v^T_E be the Minkowski linear functional defined by

$$v^T_E(\Delta_I) = \begin{cases}
1 & \text{if } E \subseteq I \subseteq T, \\
0 & \text{otherwise}.
\end{cases}$$

We characterize all positive, translation-invariant Minkowski linear functionals on P_d.

Proposition

Let $\varphi : P_d \to \mathbb{R}$ be a Minkowski linear functional. Then φ is positive and translation-invariant if and only if there are nonnegative real numbers c^T_E such that

$$\varphi = \sum_{E \in \binom{[d]}{2}} \sum_{T \supseteq E} c^T_E v^T_E.$$

In particular, the family of positive, translation-invariant Minkowski linear functionals is a polyhedral cone with rays v^T_E.

The proof is not difficult: It essentially uses Conic Duality.
The Final step is to specialize the above theorem to the case when the functionals are also symmetric (under co-ordinate permutations).
The Final step is to specialize the above theorem to the case when the functionals are also symmetric (under co-ordinate permutations).

For all $1 \leq k \leq d - 1$ let $f_k : \mathcal{P}_d \to \mathbb{R}$ be the symmetric, translation-invariant Minkowski linear functional defined by

$$
(f_k)(\Delta_{i+1}) = \binom{i+1}{2} \binom{d-i-1}{k-i} \tag{3.2}
$$

for all $1 \leq i \leq d - 1$.
The Final step is to specialize the above theorem to the case when the functionals are also symmetric (under co-ordinate permutations).

For all \(1 \leq k \leq d - 1\) let \(f_k : \mathcal{P}_d \rightarrow \mathbb{R}\) be the symmetric, translation-invariant Minkowski linear functional defined by

\[
(f_k)(\Delta_{i+1}) = \binom{i + 1}{2} \binom{d - i - 1}{k - i}
\]

(3.2)

for all \(1 \leq i \leq d - 1\).

Theorem

Let \(\varphi : \mathcal{P}_d \rightarrow \mathbb{R}\) be a Minkowski linear functional. Then \(\varphi\) is positive, translation-invariant and symmetric if and only if there are real numbers \(c_1, \ldots, c_{d-1} \geq 0\) such that

\[
\varphi = \sum_{k=1}^{d-1} c_k f_k.
\]

In particular, the family of all positive, Minkowski linear, translation- and symmetric functionals form a simplicial cone of dimension \(d - 1\).
The final step is showing that the functional

$$\sum_{I \subset [d]} y_I \Delta_I \rightarrow \sum_{I \subset [d]} y_I h_{|I|},$$

satisfies the above condition. This uses some basic combinatorics with univariate polynomials.
Let $q \in \mathbb{R}^d$ be a point, $P \subseteq \mathbb{R}^d$ be a polytope and let $B_\epsilon(q)$ denote the ball with radius ϵ centered at q. The solid angle of q with respect to P is defined by

$$\omega_q(P) = \lim_{\epsilon \to 0} \frac{(P \cap B_\epsilon(q))}{B_\epsilon}.$$

We note that the function $q \mapsto \omega_q(P)$ is constant on relative interiors of the faces of P. In particular, if $q \not\in P$ then $\omega_q(P) = 0$, if q is in the interior of P then $\omega_q(P) = 1$ and if q lies inside the relative interior of a facet then $\omega_q(P) = \frac{1}{2}$. The solid angle sum of P is defined by

$$A(P) = \sum_{q \in \mathbb{Z}^d} \omega_q(P) \quad \text{Fact: McMullen’s theorem shows this is a polynomial}$$

Proposition

There is a 3-dimensional generalized permutahedron in \mathbb{R}^4 such that the linear term of its solid angle polynomial is negative.
Definition (Birkhoff Polytope)

The Birkhoff polytope is the set of all $n \times n$ matrices with non-negative entries so that each row and column sum is 1. This is a polytope of dimension $(n - 1)^2$.

Perhaps the most basic problem in the theory of Ehrhart positivity is

Conjecture (Folklore)

The Birkhoff Polytope is Ehrhart positive.

This has been experimentally verified for $n \leq 11$.

The Birkhoff polytope is the Bipartite Matching polytope of the complete graph K_n, n. With very little evidence, we rashly conjecture

Conjecture

Bipartite Matching polytopes are Ehrhart positive.

What about general matching polytopes? We conjecture

Conjecture

General matching polytopes need not be Ehrhart positive.
Open Problems

Definition (Birkhoff Polytope)

The Birkhoff polytope is the set of all $n \times n$ matrices with non-negative entries so that each row and column sum is 1. This is a polytope of dimension $(n - 1)^2$.

Perhaps the most basic problem in the theory of Ehrhart positivity is

Conjecture (Folklore)

The Birkhoff Polytope is Ehrhart positive.

This has been experimentally verified for $n \leq 11$.
Definition (Birkhoff Polytope)

The Birkhoff polytope is the set of all $n \times n$ matrices with non-negative entries so that each row and column sum is 1. This is a polytope of dimension $(n - 1)^2$.

Perhaps the most basic problem in the theory of Ehrhart positivity is

Conjecture (Folklore)

The Birkhoff Polytope is Ehrhart positive.

This has been experimentally verified for $n \leq 11$.

The Birkhoff polytope is the Bipartite Matching polytope of the complete graph $K_{n,n}$. With very little evidence, we rashly conjecture

Conjecture

Bipartite Matching polytopes are Ehrhart positive.
Definition (Birkhoff Polytope)

The Birkhoff polytope is the set of all $n \times n$ matrices with non-negative entries so that each row and column sum is 1. This is a polytope of dimension $(n - 1)^2$.

Perhaps the most basic problem in the theory of Ehrhart positivity is

Conjecture (Folklore)

The Birkhoff Polytope is Ehrhart positive.

This has been experimentally verified for $n \leq 11$.

The Birkhoff polytope is the Bipartite Matching polytope of the complete graph $K_{n,n}$. With very little evidence, we rashly conjecture

Conjecture

Bipartite Matching polytopes are Ehrhart positive.

What about general matching polytopes? We conjecture

Conjecture

General matching polytopes need not be Ehrhart positive.
Coming to matroid polytopes, consider the following operations on a matroid $M = (E, T)$.

- **Deletion**: Given $e \in E$, the matroid $M \setminus e$ is the matroid on the ground set $E \setminus e$ with independent sets being independent sets in M not containing e.

- **Contraction**: Given $e \in E$, the matroid M/e is the matroid on the ground set $E \setminus e$ with independent sets being those sets such that appending e gives an independent set in M.

Conjecture: The linear term of the Ehrhart polynomials on matroid polytopes is monotone with respect to deletion and contraction.

We have verified this in over a hundred special cases.
Coming to matroid polytopes, consider the following operations on a matroid $M = (E, T)$.

- **Deletion:** Given $e \in E$, the matroid $M \setminus e$ is the matroid on the ground set $E \setminus e$ with independent sets being independent sets in M not containing e.
- **Contraction:** Given $e \in E$, the matroid M/e is the matroid on the ground set $E \setminus e$ with independent sets being those sets such that appending e gives an independent set in M.

Conjecture

The linear term of the Ehrhart polynomials on matroid polytopes is monotone with respect to deletion and contraction.

We have verified this in over a hundred special cases.
Thanks for Listening!