Measures of maximal dimension on (uniformly) hyperbolic sets

Yakov Pesin Pennsylvania State University

Mittag-Leffler Institute Program on "Fractal Geometry and Dynamics"

October 3, 2017

Repellers for Expanding Maps

M smooth Riemannian manifold;

 $U \subset M$ an open set;

 $f: U \to M$ a smooth map;

 $\Lambda \subset U$ is a compact f-invariant set.

 Λ is a repeller for f and f is expanding on Λ if:

- **1** $\Lambda = \{x \in U : f^n(x) \in U, \text{ for all } n \geq 0\};$
- ② there is $\lambda > 1$ such that for all $x \in \Lambda$ and $v \in T_x M$,

$$||d_{x}fv|| \geq \lambda ||v||.$$

 Λ is conformal if $d_x f = a(x) \operatorname{Isom}_x$ for all $x \in \Lambda$, where a(x) is a Hölder continuous function, |a(x)| > 1, and Isom_x is an isometry on $T_x M$.

 Λ is a hyperbolic set for f and f is hyperbolic on Λ if there is $\lambda > 1$ and for every $x \in \Lambda$ a splitting $T_x M = E^s(x) \oplus E^u(x)$ such that

- $dfE^s(x) = E^s(f(x))$ and $dfE^u(x) = E^u(f(x))$.
- For every $x \in \Lambda$ and $n \ge 0$,

$$||d_x f v|| \le \lambda^{-1} ||v||, \quad v \in E^s(x);$$

 $||d_x f^{-1} v|| \le \lambda^{-1} ||v||, \quad v \in E^u(x).$

Note that $E^{s,u}(x)$ depend Hölder continuously on $x \in \Lambda$.

 Λ is a hyperbolic set for f and f is hyperbolic on Λ if there is $\lambda > 1$ and for every $x \in \Lambda$ a splitting $T_x M = E^s(x) \oplus E^u(x)$ such that

- $dfE^s(x) = E^s(f(x))$ and $dfE^u(x) = E^u(f(x))$.
- For every $x \in \Lambda$ and $n \ge 0$,

$$||d_x f v|| \le \lambda^{-1} ||v||, \quad v \in E^s(x);$$

 $||d_x f^{-1} v|| \le \lambda^{-1} ||v||, \quad v \in E^u(x).$

Note that $E^{s,u}(x)$ depend Hölder continuously on $x \in \Lambda$. For every $x \in \Lambda$ one can construct local stable $V^s(x)$, and local unstable $V^u(x)$ manifolds.

 Λ is a hyperbolic set for f and f is hyperbolic on Λ if there is $\lambda > 1$ and for every $x \in \Lambda$ a splitting $T_x M = E^s(x) \oplus E^u(x)$ such that

- $dfE^s(x) = E^s(f(x))$ and $dfE^u(x) = E^u(f(x))$.
- For every $x \in \Lambda$ and $n \ge 0$,

$$||d_x f v|| \le \lambda^{-1} ||v||, \quad v \in E^s(x);$$

 $||d_x f^{-1} v|| \le \lambda^{-1} ||v||, \quad v \in E^u(x).$

Note that $E^{s,u}(x)$ depend Hölder continuously on $x \in \Lambda$. For every $x \in \Lambda$ one can construct local stable $V^s(x)$, and local unstable $V^u(x)$ manifolds.

Λ is locally maximal if $Λ = \{x \in U : f^n(x) \in U, \text{ for all } n \in \mathbb{Z}\}$, iff for every two points $x, y \in Λ$ that are sufficiently close, the intersection $[x, y] = V^s(x) \cap V^u(x)$ is a single point in Λ.

 Λ is a hyperbolic set for f and f is hyperbolic on Λ if there is $\lambda > 1$ and for every $x \in \Lambda$ a splitting $T_x M = E^s(x) \oplus E^u(x)$ such that

- $dfE^s(x) = E^s(f(x))$ and $dfE^u(x) = E^u(f(x))$.
- For every $x \in \Lambda$ and $n \ge 0$,

$$||d_x f v|| \le \lambda^{-1} ||v||, \quad v \in E^s(x);$$

 $||d_x f^{-1} v|| \le \lambda^{-1} ||v||, \quad v \in E^u(x).$

Note that $E^{s,u}(x)$ depend Hölder continuously on $x \in \Lambda$. For every $x \in \Lambda$ one can construct local stable $V^s(x)$, and local unstable $V^u(x)$ manifolds.

 Λ is locally maximal if $\Lambda = \{x \in U : f^n(x) \in U, \text{ for all } n \in \mathbb{Z}\}$, iff for every two points $x, y \in \Lambda$ that are sufficiently close, the intersection $[x,y] = V^s(x) \cap V^u(x)$ is a single point in Λ . Λ is u-conformal if $d_x f | E^u(x) = a^u(x) \text{Isom}_x$ for all $x \in \Lambda$, where $a^u(x)$ is a Hölder continuous function, $|a^u(x)| > 1$, and Isom_x is an isometry on $T_x M$. Similarly, one defines the notion of s-conformal.

Classical Thermodynamic Formalism (Sinai, Ruelle, Bowen)

X is a compact metric space.

 $f: X \to X$ a continuous map of finite topological entropy.

 φ a continuous function (potential) on X.

 $\mathcal{M}(f,X)$ the space of all f-invariant Borel probability ergodic measures on X.

 $\mu_{\varphi} \in \mathcal{M}(f,X)$ is an equilibrium measure if

$$P(\varphi) := \sup_{\mu \in \mathcal{M}(f,X)} \{h_{\mu}(f) + \int_{X} \varphi \, d\mu\} = h_{\mu_{\varphi}}(f) + \int_{X} \varphi \, d\mu_{\varphi}.$$

Classical Thermodynamic Formalism (Sinai, Ruelle, Bowen)

X is a compact metric space.

 $f: X \to X$ a continuous map of finite topological entropy.

 φ a continuous function (potential) on X.

 $\mathcal{M}(f,X)$ the space of all f-invariant Borel probability ergodic measures on X.

 $\mu_{\varphi} \in \mathcal{M}(f,X)$ is an equilibrium measure if

$$P(\varphi) := \sup_{\mu \in \mathcal{M}(f,X)} \{h_{\mu}(f) + \int_{X} \varphi \, d\mu\} = h_{\mu_{\varphi}}(f) + \int_{X} \varphi \, d\mu_{\varphi}.$$

Theorem

Let f be a diffeomorphism with an invariant set Λ that is either a repeller or a locally maximal hyperbolic set. If $f|\Lambda$ is topologically transitive, then for every Hölder continuous potential φ there is a unique equilibrium measure μ_{φ} for φ .

Hausdorff Dimension of Conformal Repellers

Λ is a conformal repeller for a $C^{1+\alpha}$ map. $\varphi_t(x) := -t \log a(x)$ – the geometric t-potential – Hölder continuous for each t; in particular, it admits a unique equilibrium measure μ_t .

Theorem (Bowen-Ruelle)

- The pressure function $P(t) := P(\varphi_t)$ is convex, decreasing, and real analytic in $t \in \mathbb{R}$ and there is a (unique) number $0 < \tau < \dim M$ for which $P(\tau) = 0$ (Bowen's equation).
- **3** dim_H μ_{τ} = dim_H Λ ; that is μ_{τ} is the unique invariant measure of maximal Hausdorff dimension; moreover, $\mu_{\tau}(\cdot) \sim m_H(\cdot, \tau)$, the Hausdorff measure at dimension τ .

Hausdorff Dimension of Non-Conformal Repellers

 Λ is a (not necessarily conformal) repeller for a $C^{1+\alpha}$ map.

- \bullet dim_H $\Lambda \leq \underline{\dim}_B \Lambda \leq \overline{\dim}_B \Lambda$ and the inequality may be strict.
- There may not exist any invariant measure of maximal Hausdorff dimension.

Conjecture (Y. Peres) There exists a (not necessarily invariant) measure of maximal Hausdorff dimension.

Hausdorff Dimension of u and s-Conformal Hyperbolic Sets

 Λ is a *u*-conformal locally maximal hyperbolic set for a $C^{1+\alpha}$ map and $f|\Lambda$ is topologically transitive.

 $\varphi_t^u(x) := -t \log a^u(x)$ is a *u*-geometric *t*-potential and is Hölder continuous for each t; in particular, it admits a unique equilibrium measure μ_t^u .

Fix $x \in \Lambda$, a small r > 0, and consider the partition ξ of the set $X = B(x,r) \cap \Lambda$ by disjoint sets $C(y) := V^u(y) \cap X$ with $y \in X$. This partition is measurable and the measure μ^u_t generates the system of conditional measures $\nu^u_t(y)$, $y \in X$ on elements C(y) of the partition ξ such that for every measurable set $E \subset X$,

$$\mu_t^u(E) = \int_{X/\xi} \int_{C(y)} \chi_E(y,z) \, d\nu_t^u(y)(z) \, d\tilde{\nu}_t^u(y),$$

where $\tilde{\nu}_t^u$ is the factor-measure on the factor-space X/ξ .

Theorem (Bowen-Ruelle)

- **1** The u-pressure function $P^u(t) := P(\varphi^u_t)$ is convex, decreasing, and real analytic in $t \in \mathbb{R}$ and there is a (unique) number $0 < \tau^u < \dim V^u(x)$ for which $P^u(\tau^u) = 0$.
- ② $\dim_H V^u(x) \cap \Lambda = \underline{\dim}_B V^u(x) \cap \Lambda = \overline{\dim}_B V^u(x) \cap \Lambda = \tau^u$ independent of $x \in \Lambda$.
- ⓐ $\dim_H \nu^u_{\tau^u}(x) = \dim_H V^u(x) \cap \Lambda$ ($\nu^u_{\tau^u}(x)$ is the conditional measure generated by $\mu^u_{\tau^u}$ on $V^u(x)$); moreover, $\nu^u_{\tau^u}(x)(\cdot) \sim m_H(\cdot, \tau^u)$, the Hausdorff measure in $V^u(x) \cap \Lambda$ at dimension τ^u .

Similar results hold for $\varphi_t^s(x) := -t \log a^s(x)$ and the equilibrium measure $\mu_{\tau^s}^s$. We have that

- ② The measure $\nu_{\tau^u}^u(x) \times \nu_{\tau^s}^s(x)$ is the measure of maximal Hausdorff dimension of $B(x,r) \cap \Lambda$ independent of x.
- **3** $m_H(E,\tau) = \nu_{\tau^u}^u(x) \times \nu_{\tau^s}^s(x)(E)$ for any measurable set $E \subset B(x,r) \cap \Lambda$.
- If the potential $\varphi^u_t(x)$ is cohomologous to $\varphi^s_t(x)$, then $\mu := \mu^u_{\tau^u} = \mu^s_{\tau^s}$ is the unique invariant measure of maximal Hausdorff dimension of Λ and $\mu(\cdot) \sim m_H(\cdot, \tau)$, the Hausdorff measure of Λ at dimension τ .

Hausdorff Dimension of Non-Conformal Hyperbolic Sets

 Λ is a (not necessarily conformal) locally maximal hyperbolic set for a $C^{1+\alpha}$ diffeomorphism.

- **1** dim_H $\Lambda \le \underline{\dim}_B \Lambda \le \overline{\dim}_B \Lambda$ and the inequality may be strict.
- ② There may be no invariant measure for which the conditional measures it generates on local unstable (respectively, stable) leaves $V^u(x)$ (respectively, $V^s(x)$) are measures of maximal Hausdorff dimension on $V^u(x) \cap \Lambda$ (respectively, of $V^s(x) \cap \Lambda$, Das and Simmons).

Conjecture (Y. Peres) For every $x \in \Lambda$ there exists a measure of maximal Hausdorff dimension in $V^u(x) \cap \Lambda$.

Lower and Upper Bounds on Dimension of Repellers

To obtain lower and upper bounds on the dimension, one can consider other types of geometric t-potentials, e.g., $\psi_s(x) = -s \log \|(d_x f)^{-1}\|^{-1}$ and $\phi_t(x) = -t \log \|d_x f\|$. If s^* and t^* are the unique roots of Bowen's equations

$$P(\psi_s) = 0$$
 and $P(\phi_t) = 0$,

then

$$s^* \leq \dim_H \Lambda \leq \underline{\dim}_B \Lambda \leq \overline{\dim}_B \Lambda \leq t^*$$
.

Singular Valued Potentials.

For $x \in \Lambda$ and $n \ge 1$, consider the singular values of the differentiable operator $D_x f^n : T_x M \to T_{f^n(x)} M$

$$\alpha_1(x, f^n) \geq \alpha_2(x, f^n) \geq \cdots \geq \alpha_{m_0}(x, f^n).$$

For $s \in [0, m_0]$, set

$$\psi^{s}(x, f^{n}) := \sum_{i=1}^{[s]} \log \alpha_{i}(x, f^{n}) + (s - [s]) \log \alpha_{[s]+1}(x, f^{n})$$

and

$$\varphi^{t}(x, f^{n}) := \sum_{i=m_{0}-[t]+1}^{m_{0}} \log \alpha_{i}(x, f^{n}) + (t-[t]) \log \alpha_{m_{0}-[t]}(x, f^{n})$$

The sequences of functions

$$\Psi(s):=\{-\psi^s(\cdot,f^n)\}_{n\geq 1} \text{ and } \Phi(t):=\{-\varphi^t(\cdot,f^n)\}_{n\geq 1}$$

are super- and sub-additive. They are called supper- and sub-additive singular valued potentials.

We consider the super- and sub-additive pressure functions

$$P_{\mathsf{sup}}(s) := P_{\mathsf{var}}(f, \Psi(s)) \text{ and } P_{\mathsf{sub}}(t) := P(f, \Phi(t)),$$

where $P_{\text{var}}(f, \Psi(s))$ is the supper-additive topological pressure and $P(f, \Phi(t))$ is the sub-additive topological pressure. $P_{\text{sup}}(s)$ and $P_{\text{sub}}(t)$ are continuous and strictly decreasing in s, and in t. Let s^* and t^* be the (unique) roots of Bowen's equations $P_{\text{sup}}(s) = 0$ and $P_{\text{sub}}(t) = 0$ respectively.

Theorem (Falconer, Zhang, Ban-Cao-Hu, Cao-P.-Zhao)

- If f is C^1 , then $\dim_H \Lambda \leq t^*$.
- If f is $C^{1+\gamma}$, then $\dim_H \Lambda \geq s^*$.
- If f is $C^{1+\gamma}$, then $\overline{\dim}_B \Lambda \leq t^*$, provided $\frac{1}{C} \leq \frac{\alpha_i(x,f^n)}{\alpha_i(y,f^n)} \leq C$ for some C>0 and every $1 \leq i \leq m_0$, n>0, and $x,y \in P_{i_0i_1...i_{n-1}}$ (a cylinder associated with a Markov partition of Λ).

The Geometric Approach to Equilibrium Measures

The idea of the geometric approach is to follow the classical Bogolyubov-Krylov procedure for constructing invariant measures by pushing forward a given reference measure. To this end fix $x \in \Lambda$ and let $\kappa^u(x)$ be a Borel probability measure on $V^u(x) \cap \Lambda$. We can extend this measure to a measure on the whole Λ (still denoted by $\kappa^u(x)$). Consider the sequence of probability measures on Λ

$$\kappa_n^{u}(x) = \frac{1}{n} \sum_{k=0}^{n-1} f_*^k \kappa^{u}(x).$$
 (1)

Any weak* limit κ of this sequence is an invariant measure on Λ . The sequence of measures $\kappa_n^u(x)$ describe the evolution of the reference measure $\kappa^u(x)$ under the dynamics.

To see that this procedure can be used to obtain equilibrium measures assume that μ_{φ} is an equilibrium measure for a potential φ and consider the system of conditional measures $\nu^u(x)$ on $V^u(x) \cap \Lambda$ that is generated by μ_{φ} .

$\mathsf{Theorem}$

For almost every $x \in \Lambda$, setting the reference measure $\kappa^u(x)$ to be the conditional measure $\nu^u(x)$, the sequence of measures $\kappa^u_n(x)$ converges to the equilibrium measure μ_{φ} .

Therefore, to construct an equilibrium measure using the geometric approach, one needs to "guess" the conditional measure generated by the desired equilibrium measure on unstable leaves, choose it as a reference measure and then apply the above theorem.

In the particular case $\Lambda=M$ (i.e., f is an Anosov diffeomorphism) we can choose the leaf-volume m_x^u on $V^u(x)$ as a reference measure (i.e., $\kappa^u(x)=m_x^u$) and applying the push forward procedure (1), we obtain a limit measure κ for which conditional measures it generates on unstable leaves are equivalent to leaf-volume. Thus κ is the Sinai-Ruelle-Bowen (SRB) measure for f and it is an equilibrium measure for the potential $\varphi_1(x)=-\log|\mathrm{Jac} df|E^u(x)|$, so that (by the entropy formula):

$$h_{\kappa}(f) + \int_{M} \varphi_{1} d\kappa = \sup_{\mu \in \mathcal{M}(f,M)} \left\{ h_{\mu}(f) + \int_{M} \varphi_{1} d\mu \right\} = P(\varphi_{1}) = 0.$$

Carathéorody Dimension Structure (Ya. P.)

X a set.

 \mathcal{F} a collection of subsets of X called admissible.

 $\eta,\psi:\mathcal{F}\to [0,\infty)$ set functions satisfying

- (A1) $\emptyset \in \mathcal{F}$; $\eta(\emptyset) = \psi(\emptyset) = 0$ and $\eta(U), \psi(U) > 0$ for any $U \in \mathcal{F}, U \neq \emptyset$;
- (A2) for any $\delta > 0$ one can find $\varepsilon > 0$ such that $\eta(U) \leq \delta$ for any $U \in \mathcal{F}$ with $\psi(U) \leq \varepsilon$;
- (A3) there exists $\varepsilon_0 > 0$ such that for any $0 < \varepsilon \le \varepsilon_0$, one can find a finite or countable subcollection $\mathcal{G} \subset \mathcal{F}$ covering X such that $\psi(U) \le \varepsilon$ for any $U \in \mathcal{G}$.

Let $\xi: \mathcal{F} \to [0,\infty)$ be a set function. The collection of subsets \mathcal{F} and the functions ξ, η, ψ , satisfying (A1), (A2), (A3) introduce a Carathéodory dimension structure or C-structure $\tau = (\mathcal{F}, \xi, \eta, \psi)$ on X.

 η is a potential set function, ξ measures the weight, and ψ the size of $U\subset \mathcal{F}.$

For any subcollection $\mathcal{G} \subset \mathcal{F}$ let $\psi(\mathcal{G}) := \sup\{\psi(U) : U \in \mathcal{G}\}$. Given $Z \subset X$ and numbers $\alpha \in \mathbb{R}$ and $\varepsilon > 0$, define

$$M_{\mathcal{C}}(Z,\alpha,\varepsilon) := \inf_{\mathcal{G},\psi(\mathcal{G}) \leq \varepsilon} \left\{ \sum_{U \in \mathcal{G}} \xi(U) \eta(U)^{\alpha} \right\},$$

where the infimum is taken over all finite or countable subcollections $\mathcal{G} \subset \mathcal{F}$ covering Z. Set

$$m_{\mathcal{C}}(Z,\alpha) := \lim_{\varepsilon \to 0} M_{\mathcal{C}}(Z,\alpha,\varepsilon).$$

If $m_C(\emptyset,\alpha)=0$, the set function $m_C(\cdot,\alpha)$ becomes an outer measure on X, which induces a measure called the α -Carathéodory measure. In general, this measure may not be σ -finite or it may be a zero measure.

Furthermore, there exists $\alpha_C \in \mathbb{R}$ s.t. $m_C(Z,\alpha) = \infty$ for $\alpha < \alpha_C$ and $m_C(Z,\alpha) = 0$ for $\alpha > \alpha_C$ (while $m_C(Z,\alpha_C)$ may be 0, ∞ , or a finite positive number). The quantity $\dim_C Z = \alpha_C$ is the Carathéodory dimension of Z.

Examples of *C*-structures

C-structures can be generated by other structures on the set X.

 $oldsymbol{0}$ X is a metric space, the C-structure is given by

$$\mathcal{F}:=\{ ext{open sets}\},\quad \xi(U)=1,\quad \eta(U)=\psi(U)= ext{diam }U.$$

 $\dim_C Z = \dim_H Z$ is the Hausdorff dimension of Z.

② X is a metric space, $f: X \to X$ continuous, $\varphi: X \to \mathbb{R}$ continuous. Fix r > 0 and set

$$B_{n}(x,r) := \{ y \in X : d(f^{k}(x), f^{k}(y)) \leq r, 0 \leq k \leq n \}$$

$$\mathcal{F} := \{ \emptyset \} \cup \{ B_{n}(x,r) : x \in X, n \geq 0 \},$$

$$\xi(B_{n}(x,r)) := e^{S_{n}\varphi(x)},$$

$$\eta(B_{n}(x,r)) := e^{n}, \ \psi(B_{n}(x,r)) := \frac{1}{n}.$$

 $\dim_{\mathcal{C}} Z = \limsup_{r \to 0} \dim_{\mathcal{C},r} Z = P_{\mathcal{Z}}(\varphi)$, the topological pressure of φ on Z (Pitskel', P.).

Other examples of Carathéodory dimensions are dimension spectra for pointwise dimensions and dimension of Poincaré, recurrences.

Carathéodory Structure on Local Unstable Manifolds (Climenhaga, P., Zelerowicz)

Fix $x_0 \in \Lambda$ and set $X := V^u(x_0) \cap \Lambda$. Fix a small number r > 0 and define the Bowen's *u*-ball by

$$B_n^u(x,r) := \{ y \in V^u(x) \cap \Lambda : d(f^k(y), f^k(x)) < r \text{ for } k = 0, \dots, n \}.$$

Then set define the collection ${\mathcal F}$ of admissible sets by

$$\mathcal{F} := \{\emptyset\} \cup \{B_n^u(x,r) : x \in V^u(x_0) \cap \Lambda, n \in \mathbb{N}\},$$

$$\xi(B_n^u(x,r)) := \exp(S_n\varphi(x)),$$

$$\eta(B_n^u(x,r)) := e^{-n}, \ \psi(B_n^u(x,r)) := \frac{1}{n}.$$

It is easy to see that the collection of subsets $\mathcal F$ and set functions ξ,η,ψ satisfy (A1), (A2), (A3), and hence, introduce a C-structure in X.

Thus we obtain the Carathéodory measure $m_{C,x_0}^u(\cdot) := m_{C,x_0}(\cdot,P)$ on X at the Carathéodory dimension $P = \dim_C X$. For every $Z \subset X$ we have

$$m^u_{C,x_0}(Z) = \lim_{N \to \infty} \inf_{\{B^u_{n_i}(x_i,r)\}} \left\{ \sum_i \exp\left(-Pn_i + \sum_{k=0}^{n_i-1} \varphi(f^k(x_i))\right) \right\},$$

where the infimum is taken over all collections $\{B^u_{n_i}(x_i, r)\}$ of Bowen's u-balls with $x_i \in X$, $n_i \geq N$, which cover Z that is $Z \subset \bigcup_i B^u_{n_i}(x_i, r)$.

The Carathéodory structure and hence, the Carathéodory measure depend on the potential φ but do not depend on r due to expansivity of the map $f|\Lambda$: there is $\delta>0$ such that no two trajectories can stay within the distance δ from each other.

Theorem (Climenhaga, P., Zelerowicz))

The P-Carathéodory measure m_{C,x_0}^u on $X = V^u(x_0) \cap \Lambda$ is finite and positive independently of the choice of the point x_0 and the number r provided it is sufficiently small. Moreover, $P = P(\varphi)$.

As an immediate corollary we obtain that for any set $Z \subset X$ of positive m^u_{C,x_0} -measure we have that $\dim_C Z = P$.

Obtaining Equilibrium Measures by Pushing Forward Carathéodory Measures on Unstable Leaves

Theorem (Climenhaga, P., Zelerowicz))

Let Λ be a topologically transitive locally maximal hyperbolic set and φ a Hölder continuous potential function. Then for any $x \in \Lambda$:

- **1** The sequence of measures (1) with the reference measure $\kappa^u(x) = m_{C,x}^u$ converges as $n \to \infty$ to a limiting measure μ_{φ} , which is the unique equilibrium measure for φ .
- ② The measure μ_{φ} has the Gibbs property: there is Q > 0 such that for all $x' \in \Lambda$,

$$Q^{-1} \le \frac{\mu_{\varphi}(B_n(x',\varepsilon))}{e^{-nP(\varphi)+S_n\varphi(x)}} \le Q. \tag{2}$$

③ The conditional measure ν^u generated by μ_{φ} on $V^u(x')$ and the measure $m^u_{C,x}$ are equivalent for μ_{φ} -almost every $x' \in \Lambda$.

Measures of Maximal Carathéodory Dimension

Let Λ be a topologically transitive locally maximal hyperbolic set. Consider the u-geometric t-potential $\varphi^u_t = -\log \operatorname{Jac} df | E^u(x)$. The pressure function $P^u(t) = P(\varphi^u_t)$ is monotonically decreasing, convex and real analytic in t. Moreover, $P^u(t) \to +\infty$ as $t \to -\infty$ and $P^u(t) \to -\infty$ as $t \to +\infty$ with $P^u(1) \le 0$. Therefore, there is a number $0 < t^u \le 1$ which is the unique solution of Bowen's equation $P^u(t^u) = 0$. This implies that the Carathéodory measure $m^u_{C,x}$ becomes

$$m_{C,x}^{u}(Z) = \lim_{N \to \infty} \inf \left\{ \sum_{\{B_{n_{i}}^{u}(x_{i},r)\}} \left(\prod_{k=0}^{n_{i}-1} \operatorname{Jac}(df|E^{u}(f^{k}(x_{i})))^{-t^{u}} \right\}.$$
(3)

where the infimum is taken over all collections $\{B_{n_i}^u(x_i, r)\}$ of Bowen's *u*-balls with $x_i \in X$, $n_i \ge N$, which cover Z.

Relation (3) shows that the measure $m_{C,x}^u$ can be viewed as the Carathéodory measure generated by yet another C-structure: $\tau' = (\mathcal{F}, \xi', \eta', \psi)$, where \mathcal{F} is the collection of Bowen's u-balls, $\xi'(\mathcal{B}_n^u(x,r)) := 1$, and

$$\eta'(B_n^u(x,r)) := \prod_{k=0}^{n_i-1} \operatorname{Jac}(df|E^u(f^k(x_i))^{-1}.$$

It is easy to see that with respect to the C-structure τ' we have that $\dim_{C,\tau'}X=t^u$ and the measure $m^u_{C,x}=m_{C,\tau'}(\cdot,t^u)$ is the measure of maximal Carathéodory dimension. In particular, the Carathéodory dimension of $X=V^u(x)\cap \Lambda$ does not depend of the choice of the point $x\in \Lambda$.

In the particular case when the map f is u-conformal the direct calculation involving (3) shows that the Carathéodory measure $m_{C,\times}^u$ is the measure of full Hausdorff dimension and that $\tau^u = t^u \dim E^u = \dim_H X$.