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Abstract. In this paper we discuss some results about inhomogeneous metric Diophantine ap-

proximation. By using a Fourier analytic method we see that in some sense the inhomogeneous
Diophantine approximation is the same as its homogeneous counterpart. For example, when

dealing with the Hausdorff dimension of well approximable numbers in unit interval, the inho-

mogeneity does not create any changes. As a by-product, this Fourier analytic method can also
help us to get some partial result towards the (inhomogeneous) Duffin-Schaeffer conjecture.

1. Brief background of (inhomogeneous) Diophantine approximation

In this section we give a short survey about metric Diophantine approximation on unit interval.
The central object to study is the following:

Definition 1.1. Given any sequences

f : N→ [0, 1/2] and θ : N→ [0, 1/2],

we define the well approximable numbers to be the following sets:

W0(f, θ) =

{
x ∈ [0, 1] :

∣∣∣∣x− q + θ(p)

p

∣∣∣∣ < f(p)

p
for infinitely many pairs of numbers p, q

}
W (f, θ) =

{
x ∈ [0, 1] :

∣∣∣∣x− q + θ(p)

p

∣∣∣∣ < f(p)

p
for infinitely many coprime pairs of numbers p, q

}
.

We refer the sequence f as approximation function and the sequence θ as inhomogeneous shift.

For homogeneous theory (∀n, θ(n) = 0) most of the materials here can be found in [BRV16,
chapter 2]. For inhomogeneous theory there are many references. For linear forms we refer [BHH17],
[LN12], [Bug03], [Lev98]. For more general setting including approximation on manifolds we refer
[BV10], [Bad10], [BBV13]. In this paper we are dealing with the situation in unit interval. In
this situation, we refer [Ram17] for more details on results and progresses inhomogeneous metric
Diophantine approximation on real line.

A classical result in this setting is the following:

Theorem (Khintchine-Groshev). If f is non-increasing approximation function such that:
∞∑
p=1

f(p) =∞,

then for any a ∈ [0, 1/2]:

W0(f,a) has full Lebesgue measure.
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Here for convenience the bold letter a denotes the constant sequence θ such that θ(n) = a for
all n.

Later Duffin-Schaeffer [DS41] generalized Khintchine’s result in homogeneous case. The result
concerns approximation by rational numbers with lowest form and drops out the requirement of
monotonicity.

Theorem (Duffin-Schaeffer). For any approximation function f , if the following additional con-
dition is satisfied:

(1) lim sup
n→∞

∑n
p=1

f(p)φ(p)
p∑n

p=1 f(p)
> 0.

Then
∞∑
p=1

f(p)

p
φ(p) =∞ =⇒ W (f,0) has full Lebesgue measure.

In the same paper, Duffin and Schaeffer asked whether the condition (1) can be dropped. They
made the following famous conjecture.

Conjecture (Duffin-Schaeffer). For any approximation function f :
∞∑
p=1

f(p)

p
φ(p) =∞ =⇒ W (f,0) has full Lebesgue measure.

Remark.

A lot of work has been done since the birth of this conjecture. Various replacements of condition
(1) have been found and we think that the mathoverflow webpage [Onl] gives a nice and brief
overview. Most recently, Beresnevich, Harman, Haynes and Velani [BHHV13] proved that the
statement of Duffin-Schaeffer conjecture is true if the function f satisfies the following extra
divergent condition:

(*)
∑
p≥16

φ(p)f(p)

p exp(c(log log p)(log log log p))
=∞.

For Hausdorff dimension of setsW0(., .),W (., .), the situation is much better known. For example
we have the following results in [HPV12], [HS96]:

Theorem (Haynes-Pollington-Velani). For any approximation function f and any positive real
number s ∈ (0, 1]:

∞∑
p=1

(
f(p)

p

)s
φ(p) =∞ =⇒ dimHW (f,0) ≥ s.

Theorem (Hinokuma-Shiga). For any approximation function f and real number α ∈ [1,∞) we
set

Cα(N) = Cardinality of the set

{
p ≤ N : f(p)/p ≥ 1

pα

}
.

and

δ(α) = sup

{
δ : lim sup

N→∞

Cα(N)

Nδ
> 0

}
.

Then
dimHW0(f,0) = min{1, sup

α≥1
κ(α)},
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where κ(α) is the following number:

κ(α) =

{
1+δ(α)
α limN→∞ Cα(N) =∞

0 otherwise

For inhomogeneous case, when the approximation function is monotonic, we have the following
result due to Levesley [Lev98]:

Theorem. For any monotonically decreasing approximation function f and any positive real num-
bers s ∈ (0, 1], a ∈ [0, 1/2]:

∞∑
p=1

(
f(p)

p

)s
p =∞ =⇒ dimHW (f,a) ≥ s.

2. Results in this paper

The basic idea of proving those results is to use a so-called generalized Borel-Cantelli lemma
(see theorem 4.1). The main task is to estimate the measure of intersection (P (Ai ∩Aj) appeared
in theorem 4.1). The difficulty for inhomogeneous case is that the measure of intersection is not
simple enough to apply theorem 4.1. In this paper, we introduce a new idea involving Fourier
analytic method to overcome some of the difficulties.

There are some results about inhomogeneous Duffin-Schaeffer type results. In [BHV17, con-
jecture 2.1], it was shown that if the inhomogeneous Duffin-Schaeffer theorem is true then the
inhomogeneous Gallagher theorem is also true. Also in [Cho17, conjecture 1.7] a inhomogeneous
Duffin-Schaeffer conjecture was formulated. We shall prove here a weaker result towards the inho-
mogeneous Duffin-Schaeffer theorem, see theorem 2.8.

We shall see that within the scale of Fourier analytic method, the homogeneous and inhomoge-
neous situations are more or less the same. In particular, we prove the following results:

Theorem 2.1. [Main Result] For any approximation function f and inhomogeneous shift θ. We
have the following equality:

dimHW0(f,0) = dimHW (f, θ).

Remark 2.2. Motto: for Hausdorff dimension, inhomogeneity and coprimeness are ignorable. It
is interesting to ask whether the corresponding measure results hold. (see [Ram17, Question 10])

The above result follows by using the mass transference principle and the following by-product
(for homogeneous case we got better condition (*)):

Theorem 2.3. For any approximation function f and inhomogeneous shift θ:

lim sup
n→∞

∑n
p=1 φ(p)f(p)/p

log2 n log log n exp(3 log 2 log n/ log logn)
=∞ =⇒ W (f, θ) has full Lebesgue measure.

Remark 2.4. The denominator here grows with a sub-polynomial but sup-logarithmic speed. It
is enough for our purpose in this paper but it is far from optimal. It is likely that some better
estimates than those in section 5 can be made and we can in fact find better denominator that
grows more slowly. (If it can be made bounded then the Duffin-Schaeffer conjecture follows.)

Remark 2.5. In fact we can show that the expected number of solution for Lebesgue almost all
x ∈ [0, 1] up to level n is of order 2

∑n
p=1 φ(p)f(p)/p + o(

∑n
p=1 φ(p)f(p)/p). See section 10 for

more details.
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To prove the above theorem we show that the following Duffin-Schaeffer type result which is
the main by-product of this paper.

Theorem 2.6 (Main by-product). For any approximation function f and inhomogeneous shift θ:

lim sup
n→∞

∑n
p=1 φ(p)f(p)/p√∑n
p=1 f(p)d3(p) log2 p

=∞ =⇒ W (f, θ) has full Lebesgue measure.

Remark 2.7. By Hardy-Ramanujan-Turán-Kubilius theorem on normal oder of logarithm of di-
visor function we see that if the aproximation function f is supported on a large subset of N on
which d(n) ≤ log1+ε n then we can provide an inhomogeneous Duffin-Schaeffer type result with
extra logarithmic divergency (compare with the sup-logarithmic divergent condition (*)).

For a positive number ε > 0, let A ⊂ N is such that:

a ∈ A ⇐⇒ d(a) ≤ log1+ε a.

Note that A is of natural density 1.
Then for an approximation function suppoerted on A and any inhomogeneous shift θ:

f(n) 6= 0 =⇒ n ∈ A,

lim sup
n→∞

∑n
p=1 φ(p)f(p)/p

log3+3.5ε n
=∞ =⇒ W (f, θ) has full Lebesgue measure.

Or in a more convenient form (with the help of argument in remark 2.13):
∞∑
p=1

f(p)

log3+4ε p
=∞. =⇒ W (f, θ) has full Lebesgue measure.

The power 3 + 4ε here is probably not optimal.

From Duffin-Schaeffer’s theorem we see that if f is supported on the set of integers with bounded
number of prime factors, for example primes then

∑
p f(p) = ∞ would imply the homogeneous

well approximable numbers have full Lebesgue measure. For inhomogeneous case, we have almost
the same result.

Theorem 2.8 (by-product 2+). Let f be an approximation function supported on primes numbers
then for all inhomogeneous shift θ:∑

p

f(p) =∞ =⇒ W (f, θ) has full Lebesgue measure.

More generally, let f be an approximation function supported on numbers with no more than K
prime factors then:∑

p

f(p)

log logK−1+ε p
=∞ =⇒ W (f, θ) has full Lebesgue measure.

In addition to remark 2.7, theorem 2.8 We also have the following general result for approxima-
tion functions with small support. To compare with remark 2.7 which says that inhomogeneous
Duffin-Schaeffer conjecture holds under extra logarithmic divergence if f is supported on a certain
large set with complement set of size N

log logN for large N . The following theorem saids that the

inhomogeneous Duffin-Schaeffer conjecture holds if f is supported on a small enough for exam-
ple of size N

exp(4 logN/ log logN) for large enough N . There is a large gap between log logN and

exp(4 logN/ log logN), some careful analysis on GCD sums will probably help us to somehow fill
in the gap.
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Theorem 2.9 (by-product 2++). Let θ be any inhomogeneous shift. Let f be an approximation
function and let A be the support of f :

A = {p : f(p) > 0}.
Denote #(.) for cardinality, if

lim sup
N→∞

#(A ∩ [1, N ])
log3Nd2(N)

φ(N)
<∞,

then ∑
p

f(p)φ(p)

p
=∞ =⇒ W (f, θ) has full Lebesgue measure.

Another by-product related with extra conditions of the Duffin-Schaeffer conjecture is the
following:

Theorem 2.10 (by-product 3). For any approximation function f and inhomogeneous shift θ. Let
h : R+ → R+ such that h(x) → 0 as x → 0 and h(x)/x is monotonic. If the following conditions
holds:

lim sup
n→∞

∑n
p=1 φ(p)h(f(p)/p)

log2.5 n
(
maxp∈[1,n] h(f(p)/p)1/2p

) =∞.

Then
Hh (W (f, θ)) = Hh([0, 1]).

Here Hh(.) denotes the Hausdorff measure with dimension function h, more details can be found
in [BV06, section 2] and the reference there as well.

Corollary 2.11. For any approximation function f and inhomogeneous shift θ, if there exists a
number A > 3 such that:

f(p) = O

(
logA p

p

)
,

(2) lim sup
n→∞

∑n
p=1

f(p)
p φ(p)

log
A
2 +2.5 n

> 0.

Then
∞∑
p=1

f(p)

p
φ(p) =∞ =⇒ W (f, θ) has full lebesgue measure.

proof of the corollary. We set h(x) = x in theorem 2.10 and the conclusions are easy to see. �

Remark 2.12. The above result can be compared with Vaaler [Vaa78] which says that if f(p) =
O(1/p), then the result of Duffin-Schaeffer conjecture holds without any extra conditions on the rate

of divergence of
∑∞
p=1

f(p)
p φ(p). The requirement A > 3 comes from the following consideration:

f(p) = O

(
logA p

p

)
=⇒

n∑
p=1

f(p)

p
φ(p) = O(logA+1(n)).

So for A ≤ 3, condition (2) can not be satisfied. However the number 2.5 appeared in the theorem
is by no means the best choice with our method. Since we have only used some easy properties in
lemma 5.1, 5.2 concerning arithmetic functions.

Later we shall construct an example to show that the above condition is something slightly new.
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Remark 2.13. We can state another version of the above corollary by replacing condition (2) with
the following condition:

There exists an ε > 0,
∞∑
p=2

f(p)

logA/2+2.5+ε p
=∞.

Proof of remark 2.13 based on corollary 2.11. Consider the iterated exponential intervals:

Ik =
[
22
k

, 22
k+1
]
,

then there are infinitely many k > 0 such that:∑
p∈Ik

f(p)

logA/2+2.5+ε p
>

1

k2

otherwise the following sum will not diverge:
∞∑
p=2

f(p)

logA/2+2.5+ε p
.

Then we see that: ∑
p∈Ik

f(p)

p
φ(p) =

∑
p∈Ik

f(p)

logA/2+2.5+ε p

φ(p)

p
logA/2+2.5+ε p

≥ min
p∈Ik

φ(p)

p
logA/2+2.5+ε p

∑
p∈Ik

f(p)

logA/2+2.5+ε p

≥ C
1

log log 22k+1 logA/2+2.5+ε 22
k 1

k2

≥ C ′
1

k3
2(A/2+2.5+ε)k

≥ C ′′2(A/2+2.5)(k+1)

where C,C ′, C ′′ are constants which only depend on A, ε. The choice of constant C comes from
the following fact involved with the Euler gamma γ:

(FACT) lim inf
n→∞

φ(n)

n
log log n = e−γ .

Then for all k > 0:

22
k+1∑
p=2

f(p)

p
φ(p) ≥

∑
p∈Ik

f(p)

p
φ(p) ≥ C ′′2(A/2+2.5)(k+1).

By corollary 2.11 this remark follows. �

Here we can provide a approximation function f without extra divergent condition (*), the
Duffin-Schaeffer condition (1) as well as the Vaaler’s condition f(p) = O(1/p). This example will
not contribute to later development. To begin with, we decompose the integer set into dyadic
intervals:

Dk = [2k, 2k+1), k = 0, 1, . . .
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For each k we choose an integer m(k) such that:

lim inf
k→∞

m(k)→∞,
∞∑
k=0

k2.4

m(k)!
=∞.

Then in each p ∈ Dk we assign the value f(p) = log10 p/p if p is a multiple of m(k)!. Otherwise we
set f(p) = 0. It can happen that for some D′ks there are no non zero values assigned. However, for
large enough k, |Dk| grows exponentially while m(k)! can not grow exponentially for otherwise the
above series would not diverge. Therefore |Dk| will become much larger than m(k)!, and eventually
a lot of non zero values will be assigned.

It is easy to see that for all large enough p:

φ(p)f(p)

p exp(c(log log p)(log log log p))
≤ 1

p log2 p
.

Therefore condition (*) is not satisfied.
Next, f(p) is only non zero if p is a multiple of np! for a suitable integer np and as p → ∞,

np →∞. Then we see that:

φ(p)

p
≤

∏
r prime,r≤np

(
1− 1

p

)
→ 0, as p→∞.

Therefore the Duffin-Schaeffer condition (1) is not satisfied.
Then for large enough k there are more than 0.5|Dk|/m(k)! numbers in Dk which are multiples

of m(k)!, so we see that:∑
p∈Dk,m(k)|p

log10 p

p log7.6 p
≥ 0.5

2k

m(k)!

k10

2k+1(k + 1)7.6
≥ 1

210
k2.4

m(k)!
,

here we used the fact that k + 1 ≥ 2k for all k > 1. Then the conditions in corollary 2.11 (
remark 2.13) are satisfied and we can use that theorem to show that the above chosen sequence
f(p) satisfies the conclusion of (inhomogeneous) Duffin-Schaeffer conjecture .

3. Notations

• In this paper we shall use C,C ′, C ′′, C ′′′, C ′′′′... as positive constants.
• In this paper, we always use f to denote approximation functions and θ to denote inhomo-

geneous shifts. Without explicitly mentioning no extra condition is assume for f, θ apart
from requirement that their range is [0, 1/2].

• In this paper for any number a ∈ R we use a to denote the constant sequence whose terms
are equal to a.

• In this paper we use dimH for Hausdorff dimension and Hh for h-Hausdorff measure with
dimension function h.

• In this paper we use the following notion of modified logarithmic function:

log x =


lnx x ≥ 3

ln 3 x ∈ [1, 3]

lnx x ∈ (0, 1)

The function is not continuous and there is no zero when x approaches 1 on the right.
• In this paper we shall use the following arithmetic functions:
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1 : The Euler function. For n ∈ N:
φ(n) = number of natural numbers smaller than n which are coprime to n.

2 : The greatest common divisor function. For a, b ∈ N:
(a, b) = the greatest common divisor of a, b.

3 : The divisor functions. For n ∈ N, α ∈ R:
d(n) = the number of divisors of n.
dα(n) =

∑
a|n a

α.

4 : The Möbius function:
For n ∈ N:

µ(n) =


1 n is squarefree with even number of prime factors

−1 n is squarefree with odd number of prime factors

0 n is not squarefree

5 : The Ramanujan sum:

For n, p ∈ N: cp(n) =
∑

1≤a≤p,(a,p)=1 e
2πi anp = µ

(
p

(p,n)

)
φ(p)

φ( p
(p,n) )

• In this paper we use P for general probability measure on a probability space Ω and λ for
Lebesgue measure on [0, 1].

• For a sequence of setsAn ⊂ X: lim supn→∞An = {x ∈ X : x ∈ An for infinitely many n ∈ N}.

4. Results that will be used without proof

Given a function f : [0, 1]→ R, which we will assume to be of some regularity, throughout this
paper we will only consider Fourier series of step functions which are L1 and L2 functions. The
Fourier series of f is given by:

∀k ∈ Z, f̂(k) =

∫ 1

0

e2πikxf(x)dx.

We will need the following facts:

f̂(0) = ‖f‖L1 whenever f(x) ≥ 0,∀x ∈ [0, 1].

f̂g(0) =

∞∑
k=−∞

f̂(k)ĝ(−k).

The above results can be found in most text books on harmonic analysis for example in [Kat04,
chapter 1, section 5.5]

We specify the version of Borel-Cantelli lemma (see [BRV16, lemma 2.2]) which will be used
later.

Theorem 4.1. Let Ap be a sequence of events in a probability space (Ω, P ) such that:

∞∑
p=1

P (Ap) =∞,

then:

P (lim sup
n→∞

An) ≥ lim sup
n→∞

(
∑n
p=1 P (Ap))

2∑n
p,q=1 P (Ap ∩Aq)

.
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Remark 4.2. In fact for homogeneous metric Diophantine approximation to conclude the full
measure result we only need to show:

lim sup
n→∞

∑n
p=1 P (Ap))

2∑n
p,q=1 P (Ap ∩Aq)

> 0.

This follows from a result of Gallagher [Gal61].

We will also use the following version of mass transference principle in [BV06].

Theorem 4.3 (Beresnevich-Velani). Let {Bi}i∈N be a countable collection of balls in R with
r(Bi) → 0 as i → 0. Let h be a dimension function such that h(x)/x is monotonic and sup-
pose that for any ball in R:

λ(B ∩ lim sup
i→∞

Bhi ) = λ(B).

Then, for any ball B in R:
Hh(B ∩ lim sup

i→∞
Bi) = Hh(B).

Here Bh denote the ball cocentered with B but radius diluted by h. That is to say, if the radius
of B is r then the radius of Bh is h(r).

5. Some asymptotic results on arithmetic functions

The estimates in this section are by no means optimal but they will be sufficient for later use.
Improvement of any of the following estimates can lead to improvement of the theorems 2.3 and
2.10. In what follows, we will use some results concerning the Ramanujan sum which can be found
in [HWHBS08] chapter 16:

cp(k) =
∑

(a,p)=1

e2πi
a
p k = µ

(
p

(p, k)

)
φ(p)

φ
(

p
(p,k)

) .
The following lemma will play a crucial role in later content:

Lemma 5.1. There is a constant C > 0 such that for any integers k, n > 0 :

1

d(k) log n

n∑
p=1

|cp(k)|
φ(p)

< C.

Here d(k) is the divisor function, that is, the number of divisors of the integer k.

Proof. By properties of the Ramanujan sum and the Euler totient function:

n∑
p=1

|cp(k)|
φ(p)

=

n∑
p=1

∣∣∣µ( p
(p,k)

)∣∣∣
φ
(

p
(p,k)

)
=

n∑
p=1

∣∣∣µ( p
(p,k)

)∣∣∣
p

(p,k)

∏
r| p

(p,k)
,r prime(1−

1
r )

=

n∑
p=1

∣∣∣µ( p
(p,k)

)∣∣∣∏
r| p

(p,k)
,r prime(r − 1)

=

n∑
l=1,l squarefree

∏
r|l,r prime

1

r − 1

∣∣∣∣{p ∈ [1, n]|l =
p

(p, k)

}∣∣∣∣ .
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The cardinality of the set can be bounded by:∣∣∣∣{p ∈ [1, n]|l =
p

(p, k)

}∣∣∣∣ ≤ d(k),

because (p, k) must be a divisor of k, and for every such divisor s|k, the value of p (if exists) can
be uniquely fixed by sl.

Then we see that:

n∑
p=1

|cp(k)|
φ(p)

≤ d(k)

n∑
l=1,l squarefree

∏
r|l,r prime

1

r − 1

≤ d(k)
∏

r≤n,r prime

(
1 +

1

r − 1

)
.

Then this lemma follows from the following Grönwall’s theorem [Grö13] :

Theorem (Grönwall).

lim
n→∞

1

log n

∏
r≤n,r prime

(
1 +

1

r − 1

)
= eγ ,

where γ is the Euler gamma γ ≈ 0.5772156. �

Another result that we will use is the following estimate of logarithmic divisor sum:

Lemma 5.2. There exists a constant C > 0 such that for all integers n > 1:

n∑
k=1

d2(k)

k
< C log3 n.

Proof. First, observe that:

d2(k) =
∑
l|k

d(l2).

Indeed for any integer with prime factorization k = pa11 . . . pank we have that:

d(k) =

i=n∏
i=1

(ai + 1).

Then we see that: ∑
l|k

d(l2) =
∑

0≤bi≤ai,i∈{1,2...n}

i=n∏
i=1

(2bi + 1)

=

n∏
i=1

(
bi=ai∑
bi=0

(2bi + 1)

)

=

n∏
i=1

(ai + 1)2 = d2(k).
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Then we have the following estimate:

n∑
k=1

d2(k)

k
=

n∑
l=1

d(l2)

k≤n∑
k:l|k

1

k

≤
n∑
l=1

d(l2)

l
(log n+ 1)

≤ (log n+ 1)

n∑
m=1

l≤n∑
l:m|l2

1

l

≤ (log n+ 1)

n∑
m=1

∑
l:m|l,l∈[1,n2]

1

l

≤ (log n+ 1)

n∑
m=1

1

m

(
log n2 + 1

)
≤ (log n+ 1)2(2 log n+ 1) ≤ C log3 n,

for a suitable constant C > 0. �

Lemma 5.3. There exists a constant C > 0 such that for q being any positive integer:∑
1≤p≤q

d(p)d(q)(p, q) ≤ Cd3(q)q log q.

Proof. ∑
1≤p≤q

d(p)d(q)(p, q) = d(q)
∑
r|q

∑
p≤q,(p,q)=r

rd(p)

= d(q)
∑
r|q

r
∑

a≤p/r,(a,q/r)=1

d(ar)

≤ d(q)
∑
r|q

r
∑

a≤p/r,(a,q/r)=1

d(a)d(r)

≤ Cd(q)
∑
r|q

rd(r)
q

r
log

q

r

≤ Cqd(q) log q
∑
r|q

d(r)

≤ Cqd(q) log q
∑
r|q

d(r2)

= Cqd3(q) log q.

Here we used Dirichlet theorem for divisor summatory function (for the constant C) and the
beginning part of the proof of lemma 5.2 �

6. Fourier series and Diophantine approximation: basic setting up

From the Borel-Cantelli lemmas 4.1 we see that it is important to show some properties of the
measure of intersection of two level sets. Now we are going to set up the Fourier analysis method:
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Let f, θ be as mentioned above, we denote

εp =
f(p)

p
.

Then we define the function
gp(x) : [0, 1]→ {0, 1}

by:

gp(x) = 1 ⇐⇒
∣∣∣∣x− q + θ(p)

p

∣∣∣∣ < f(p)

p
, for an integer q with (q, p) = 1.

Then it is clear that gp(x) is just the characteristic function on the set Ap:

Ap = {x ∈ [0, 1]|∃1 ≤ q ≤ p, (q, p) = 1,

∣∣∣∣x− q + θ(p)

p

∣∣∣∣ < f(p)

p
}.

In our case f(p) ≤ 1
2 and therefore AP is a union of φ(p) many equal length disjoint intervals. The

Lebegues measure of Ap is:
‖gp‖L1 = 2εpφ(p).

Now we see that λ(Ap ∩Aq) = ‖gpgq‖L1 . We need only to compute the case p 6= q since otherwise
the case is trivial.

Using Fourier series we can write the L1-norm as:

‖gpgq‖L1 =

∞∑
k=−∞

ĝp(k)ĝq(−k).

The above equality holds whenever the series is absolutely convergent. This happens whenever
gp, gq are both L1 functions. This is the case in our situation.

Now we need to evaluate the Fourier series of gp, it is easy to see that gp is just the characteristic
function of

[−εp, εp] =

[
−f(p)

p
,
f(p)

p

]
convolved with a sum of Dirac deltas: ∑

(a,p)=1

δ(
a+ θ(p)

p
).

But we can compute the Fourier series directly for k 6= 0:∫ 1

0

e2πikxgp(x)dx =
∑

(a,p)=1

∫ a+θ(p)
p +εp

a+θ(p)
p −εp

e2πikxdx

=
∑

(a,p)=1

1

πk
sin(2πεpk)e2πi

a+θ(p)
p k

=
1

πk
sin(2πεpk)cp(k)e2πi

θ(p)
p k,

where cp(k) =
∑

(a,p)=1 e
2πi ap kis the Ramanujan sum. For k = 0, ĝp(0) is simply ‖gp‖L1 .

Then we see that we can express λ(Ap ∩Aq) with the following series:
(Main Formula)

λ(Ap ∩Aq) = 4εpεqφ(p)φ(q) +
2

π2

∞∑
k=1

sin(2πεpk)cp(k) sin(2πεqk)cq(k) cos
(

2πi
(
θ(p)
p −

θ(q)
q

)
k
)

k2
,
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where we have used the fact that the Ramanujan sum is real and for all pairs of integers p, k:

cp(k) = cp(−k).

We see that inhomogeneous shifts θ create just an extra cos(.) term whose modulus is bounded
by 1. In what follows we shall apply absolute value in order to estimate from above the sum in the
(Main Formula) and therefore the inhomogeneous shifts do not create anything new to us.

7. proof of theorem 2.3, 2.6, 2.8

By the Main Formula we see that:

λ(Ap ∩Aq) ≤ 4εpεqφ(p)φ(q) +
2

π2

∞∑
k=1

| sin(2πεpk)cp(k) sin(2πεqk)cq(k)|
k2

The basic strategy is to split the sum of k up to a number M to be determined later:

∞∑
k=1

=

M∑
k=1

+

∞∑
k=M+1

.

For the first part, we use the fact that | sin(x)| ≤ min{|x|, 1} for all x ∈ R:

M∑
k=1

| sin(2πεpk)cp(k) sin(2πεqk)cq(k)|
k2

≤
M∑
k=1

1

k
min{εp, εq}|cp(k)||cq(k)|.

Now we recall the formula for the Ramanujan sum:

cp(k) = µ

(
p

(p, n)

)
φ(p)

φ
(

p
(p,n)

) .
Then we see that there exists an absolute constant C > 0:

M∑
k=1

| sin(2πεpk)cp(k) sin(2πεqk)cq(k)|
k2

≤
M∑
k=1

1

k
min{εp, εq}|cp(k)||cq(k)|

=

M∑
k=1

1

k
min{εp, εq}

∣∣∣∣∣∣µ
(

p

(p, k)

)
φ(p)

φ
(

p
(p,k)

)µ( q

(q, k)

)
φ(q)

φ
(

q
(q,k)

)
∣∣∣∣∣∣

≤
M∑
k=1

1

k
min{εp, εq}(p, k)(q, k)

∣∣∣∣µ( p

(p, k)

)
µ

(
q

(q, k)

)∣∣∣∣
≤

M∑
k=1

1

k
min{εp, εq}(p, k)(q, k)

≤ C logMd(p)d(q)(p, q) min{εp, εq}.
Here we used the fact that φ(n) = n

∏
r|n,r prime

r−1
r . For the last step we see that for any

divisor sp of p and rq of q, we can sum those k such that:

(p, k) = sp, (q, k) = rq.

Such k must be multiple of [sp, rq] and therefore we obtain:∑
k:(p,k)=sp,(q,k)=rq

1

k
(p, k)(q, k) ≤ C logM(sp, rq).
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Then the previous estimate follows from summing over all divisors of p, q and use the fact that
(sp, rq) ≤ (p, q).

For the second part
∑∞
k=M+1 we use the fact that | sin(x)| ≤ 1 and obtain for an absolute

constant C ′ > 0:

∞∑
k=M

| sin(2πεpk)cp(k) sin(2πεqk)cq(k)|
k2

≤ C ′

M
d(p)d(q)(p, q).

We can now set M = d(p)d(q)(p, q)p4q4 assuming εpεq 6= 0 otherwise λ(Ap ∩Aq) = 0 and there
is nothing to show. Then we see that logM ≤ 10 log p + 10 log q. In particular if p, q ≤ n then
logM ≤ 20 log n.

We see that there exists a absolute constant C ′′ > 0:

λ(Ap ∩Aq) ≤ 4εpεqφ(p)φ(q) + C ′′min{εp, εq}d(p)d(q)(p, q)(10 log p+ 10 log q) + C ′
1

p4q4

We can now use theorem 4.1 and lemma 5.3 to conclude the proof. Indeed we see that for a
constant C ′′′ > 0:
(*)
n∑

p,q=1

λ(Ap∩Aq) = (

n∑
p=1

∑
q≤p

+

n∑
q=1

∑
p<q

)λ(Ap∩Aq) ≤ (

n∑
p=1

2εpφ(p))2+C ′′′
n∑
p=1

εppd
3(p) log2 p+100C ′ζ2(4).

From here the theorem 2.6 follows. Next, it is easy to see the following result for an absolute
constant C ′′′′ and for all n:

n

φ(n)
d3(n) log2 n ≤ C ′′′′ log2 n exp(3 log 2 log n/ log log n) log log n.

We have used here the following result of divisor function:

lim sup
n→∞

log d(n)

log n/ log log n
= log 2.

From here the proof of theorem 2.3 concludes.
To see theorem 2.8, for prime numbers p, q we have d(p) = 2 and (p, q) = 1 unless p = q.

Therefore we see that by copying previous results:

λ(Ap ∩Aq) ≤ 4εpεqφ(p)φ(q) + C ′′min{εp, εq} logM +
C ′

M
.

We can choose M = p−4q−4 again and for a suitable constant C ′′′′′ > 0:

n∑
p,q=1

λ(Ap ∩Aq) ≤ (

n∑
p=1

2εpφ(p))2 + C ′′′′′
n∑
p=1

εpπ(p) log p ≤ (

n∑
p=1

2εpφ(p))2 + 2C ′′′′′
n∑
p=1

εpp.

Here π(.) is the prime counting function and we have used the fact that π(p)/p ≤ 2 1
log p for all

large enough p. From here the first part of theorem 2.8 follows. To see that second part we have
to use the fact that for all large enough p:

πK(p) ≤ 2
p

log p

log logK−1 p

(K − 1)!
.

This is a generalization of prime number theorem.
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For general case, we can not assume anything on (p, q)d(p)d(q). Let A be the support of f
denote A(p) = #(A ∩ [1, p]) a small inspection of inequality (*) gives us the following bound:

n∑
p,q=1

λ(Ap ∩Aq) ≤ (

n∑
p=1

2εpφ(p))2 + C ′′′
n∑
p=1

εpA(p)d3(p) log2 p+ 100C ′ζ2(4).

For large enough p we see that there exists a constant C ′′′′′′ > 0 such that:

A(p) ≤ C ′′′′′′ φ(p)

d3(p) log2 p
,

and then theorem 2.9 follows.

8. proof of theorem 2.1

Here we shall use a pre-mentioned result:

Theorem (Hinokuma-Shiga). For any approximation function f and real number α ∈ [1,∞) we
set

Cα(N) = Cardinality of the set

{
p ≤ N : f(p)/p ≥ 1

pα

}
.

and

δ(α) = sup

{
δ ∈ [0, 1] : lim sup

N→∞

Cα(N)

Nδ
> 0

}
.

Then
dimHW0(f,0) = min{1, sup

α≥1
κ(α)},

where κ(α) is the following number:

κ(α) =

{
1+δ(α)
α limN→∞ Cα(N) =∞

0 otherwise

We now show that dimHW (f, θ) ≥ dimHW0(f,0). The other direction can be proved just by
the same argument provided in [HS96]. Only for the lower bound there are some difficulties in
estimating the size intersections Ap ∩Aq by using direct number theoretic methods.

Now let f be any approximation function and θ be any inhomogeneous shift. As in the above
theorem, for any α, we find the set Cα(N) and find the exponent δ(α). Assume that κ(α) > 0
otherwise there is nothing to show.

Now for an arbitrarily small number σ > 0 we use the dimension function h(x) = x
1−σ+δ(α)

α

in mass transference principle theorem 4.3. Now shrinking some values of f if necessary, we can
assume that εp = f(p)/p ≥ 1/pα for a subset Cα of N such that (notice that δ(α) can be 0):

lim sup
N→∞

#|Cα ∩ [1, N ]|N−δ(α)+0.5σ =∞.

We see that h(εp) ≥ 1
x1−σ+δ(α) and

lim sup
N→∞

∑N
p=1 φ(p)h(εp)

log2N log logN exp(3 log 2 logN/ log logN)

≥ lim sup
N→∞

#|Cα ∩ [1, N ]| 1
log logN

1
N−σ+δ(α)

log2N log logN exp(3 log 2 logN/ log logN)

≥ lim sup
N→∞

N0.5σ

log2N log log2N exp(3 log 2 logN/ log logN)
=∞.



16 HAN YU

By theorem 4.3 we see that:

H
1−σ+δ(α)

α (W (f, θ)) =∞.

This implies that for all σ > 0:

dimHW (f, θ) ≥ 1− σ + δ(α)

α
.

This implies further that:

dimHW (f, θ) ≥ 1 + δ(α)

α
.

Then combine with the theorem by Hinokuma-Shiga we see that:

dimHW (f, θ) ≥ dimHW0(f,0).

9. proofs of theorem 2.10

We now try to estimate directly the following sum:

n∑
p,q=1

λ(Ap ∩Aq).

Theorem 9.1. Let f, θ, εp, as mentioned before. Then there is a constant C > 0 such that:

n∑
p,q=1

λ(Ap ∩Aq) ≤ C
(

max
p∈[1,n]

ε0.5p φ(p)

)2

log5 n+ (

n∑
p=1

2εpφ(p))2

Proof. By (Main Formula) in section 6 we see that:

n∑
p,q=1

λ(Ap ∩Aq) ≤ (

n∑
p=1

2εpφ(p))2 +
2

π2

∞∑
k=1

1

k2
(

n∑
p=1

| sin(2πεpk)cp(k)|)2.

Because | sin(x)| ≤ 1 therefore for any α ∈ [0, 1]:

| sin(x)| ≤ | sin(x)|α ≤ |x|α.

The basic strategy is again to split the sum with respect to k, say:

∞∑
k=1

=

M∑
k=1

+

∞∑
k=M+1

,

for a later determined integer M > 0. For convenience we make the following notation:

I =

M∑
k=1

,

II =

∞∑
k=M+1

.
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Then for part I we use the estimate | sin(x)| ≤ | sin(x)|0.5 ≤ |x|0.5:

I =
2

π2

M∑
k=1

1

k2

(
n∑
p=1

| sin(2πεpk)cp(k)|

)2

≤ 4

π

M∑
k=1

1

k2

(
n∑
p=1

ε0.5p k0.5|cp(k)|

)2

≤ 4

π

M∑
k=1

1

k

(
n∑
p=1

ε0.5p φ(p)
|cp(k)|
φ(p)

)2

≤ 4

π

M∑
k=1

(
maxp∈[1,n] ε

0.5
p φ(p)

)2
k

(
n∑
p=1

|cp(k)|
φ(p)

)2

.

Then by lemma 5.1,5.2 we see that for a constant C1 > 0:

I ≤ C1

(
max
p∈[1,n]

ε0.5p φ(p)

)2

log2 n log3M,

where log2 n comes from lemma 5.1 and the log3M comes from lemma 5.2. Then for II we use
the trivial bound | sin(x)| ≤ 1.

II =
2

π2

∞∑
k=M+1

1

k2

(
n∑
p=1

sin(2πεpk)|cp(k)|

)2

≤ 2

π2

∞∑
k=M+1

1

k2

(
n∑
p=1

|cp(k)|

)2

≤ 2

π2

∞∑
k=M+1

1

k2
n4 ≤ C2

n4

M

for another constant C2 > 0. In above inequalities we used the fact that:

|cp(k)| ≤ φ(p) ≤ p.

With some careful analysis we can replace the n4 with n3, but there is no essential difference as
we shall see.

Now we choose M = n5. Then the following estimate holds for a suitable constant C > 0:

I + II ≤ 125C1

(
max
p∈[1,n]

ε0.5p φ(p)

)2

log2 n log3 n+ C2
1

n
≤ C

(
max
p∈[1,n]

ε0.5p φ(p)

)2

log2 n log3 n.

From here the result of this theorem follows. �

We can now prove theorem 2.10:

Proof of theorem 2.10 using theorem 9.1. By theorem 9.1 we see that for a constant C > 0:

n∑
p,q=1

λ(Ap ∩Aq) ≤ C

(
max
p∈[1,n]

ε0.5p φ(p)

)2

log5 n+ (

n∑
p=1

2εpφ(p))2
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Then we see that:

(
∑n
p=1 2εpφ(p))2∑n

p,q=1 λ(Ap ∩Aq)
≥

(
∑n
p=1 2εpφ(p))2

C
(
maxp∈[1,n] ε0.5p φ(p)

)2
log5 n+ (

∑n
p=1 2εpφ(p))2

≥ 1

C
(
maxp∈[1,n] ε0.5p φ(p)

)2 log5 n
(
∑n
p=1 2εpφ(p))2

+ 1
,

then we can apply the following condition for h(x) = x:

lim sup
n→∞

∑n
p=1 φ(p)h(εp)

log2.5 n
(
maxp∈[1,n] h(εp)1/2p

) =∞,

and we obtain that:

lim sup
n→∞

(
∑n
p=1 2εpφ(p))2∑n

p,q=1 λ(Ap ∩Aq)
≥ lim sup

n→∞

1

C logA+5 n
(
∑n
p=1 2εpφ(p))2

+ 1

=
1

lim infn→∞ C
(
maxp∈[1,n] ε0.5p φ(p)

)2 log5 n
(
∑n
p=1 2εpφ(p))2

+ 1

=
1

0 + 1
= 1.

Then the conclusion of this theorem holds for special dimension function h(x) = x. For general
dimension functions we can combine the special case and the mass transference principle theorem
4.3 this concludes the proof. �

10. Expected number of solutions

In this section we briefly discuss some results about the number of solutions for inhomogeneous
Diophantine approximations.

Given an approximation function f and inhomogeneous shift θ. What is the generic growth of
the number of solutions:

S(f, θ, x,N) = #

∣∣∣∣{p, q ≤ N, (p, q) = 1 :

∣∣∣∣x− q + θ(p)

p

∣∣∣∣ < f(p)

p

}∣∣∣∣ .
Recall in section 6 we constructed the functions gp(.) and we see that:

S(f, θ, x,N) =

N∑
p=1

gp(x).

Then it is easy to see that: ∫ 1

0

S(f, θ, x,N)dx =

N∑
p=1

2εpφ(p) = EN .

Now we estimate the variance:∫ 1

0

|S(f, θ, x,N)− EN |2dx =

∫ 1

0

N∑
p,q=1

gp(x)gq(x)dx− (EN )2.
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By the Main Formula and argument in proof of theorem 2.3 we see directly that for some
constant C ′′′ > 0: ∫ 1

0

|S(f, θ, x,N)− EN |2dx ≤ C ′′′
N∑
p=1

εppd
3(p) log2 p,

Therefore we see that given any sequence of positive numbers β : N→ R+:

K(f, θ, x,N, β) := λ(x : |S(f, θ, x,N)− EN | ≥ βN ) ≤ C ′′′ 1

β2
N

N∑
p=1

εppd
3(p) log2 p,

so if:
K(f, θ, x,N, β)→ 0,

then there exist a subsequence Ni such that:∑
i

K(f, θ, x,Ni, β) <∞

then for Lebesgue almost every x there are only finitely many Ni such that

|S(f, θ, x,Ni)− ENi | > βNi .

Now we see that:

K(f, θ, x,N, β) ≤ C ′′′ 1

β2
N

EN log2N log logN exp(3 log 2 logN/ log logN).

Now we denote:

AN =
EN

log2N log logN exp(3 log 2 logN/ log logN)
.

Suppose that lim supN→∞AN =∞, then we see that for βN =
√
EN :

K(f, θ, x,N, β)→ 0.

This implies that for Lebesgue almost all x ∈ [0, 1] there are infinitely many integers N > 0
such that:

EN +
√
EN ≥ S(f, θ, x,N) ≥ EN −

√
EN .
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