ON THE VISIBILITY OF PLANAR SETS

TUOMAS ORPONEN

ABSTRACT. Assume that $E, K \subset \mathbb{R}^2$ are Borel sets with $\dim_H K > 0$. Is a positive dimensional part of K visible from some point in E? Not necessarily, since E can be zero-dimensional, or E and K can lie on a common line. I prove that these are the only obstructions: if $\dim_H E > 0$, and E does not lie on a line, then there exists a point in E from which a $(\dim_H K)/2$ dimensional part of E is borel set, which does not lie on a line, then the set of directions spanned by E has Hausdorff dimension at least $(\dim_H K)/2$.

1. Introduction

This paper studies visibility and radial projections in the plane. Given $p \in \mathbb{R}^2$, define the radial projection $\pi_p \colon \mathbb{R}^2 \setminus \{p\} \to S^1$ by

$$\pi_p(q) = \frac{p-q}{|p-q|}.$$

A Borel set $K \subset \mathbb{R}^2$ will be called

- *invisible from* p, if $\mathcal{H}^1(\pi_p(K\setminus\{p\}))=0$, and
- totally invisible from p, if dim_H $\pi_p(K \setminus \{p\}) = 0$.

Above, \dim_H and \mathcal{H}^s stand for Hausdorff dimension and s-dimensional Hausdorff measure, respectively. I will only consider Hausdorff dimension in this paper, as many of the results below would be much easier for box dimension. The study of (in-)visibility has a long tradition in geometric measure theory. For many more results and questions than I can introduce here, see Section 6 of Mattila's survey [8]. The basic question is the following: given a Borel set $K \subset \mathbb{R}^2$, how large can the sets

$$\operatorname{Inv}(K) = \{ p \in \mathbb{R}^2 : K \text{ is invisible from } p \}$$

and

$$\mathrm{Inv}_T(K) := \{ p \in \mathbb{R}^2 : K \text{ is strongly invisible from } p \}$$

be? Clearly $Inv_S(K) \subset Inv(K)$, and one generally expects $Inv_S(K)$ to be significantly smaller than Inv(K). The existing results fall roughly into the following three categories:

- (1) What happens if $\dim_H K > 1$?
- (2) What happens if $\dim_H K \leq 1$?
- (3) What happens if $0 < \mathcal{H}^1(K) < \infty$?

²⁰¹⁰ Mathematics Subject Classification. 28A80 (Primary) 28A78 (Secondary).

Key words and phrases. Hausdorff dimension, fractals, radial projections, visibility.

T.O. is supported by the Academy of Finland via the project *Quantitative rectifiability in Euclidean and non-Euclidean spaces*, grant No. 309365.

Cases (1) and (3) are the most classical, having already been studied in the 1954 paper [6] of Marstrand. Given s > 1, Marstrand proved that any Borel set $K \subset \mathbb{R}^2$ with $0 < \mathcal{H}^s(K) < 1$ is visible (that is, not invisible) from Lebesgue almost every point $p \in \mathbb{R}^2$, and also from \mathcal{H}^s almost every point $p \in K$. Unifying Marstrand's results, the following sharp bound was recently established by Mattila and the author in [9] and [10]:

$$\dim_{\mathbf{H}} \operatorname{Inv}(K) \le 2 - s, \qquad \dim_{\mathbf{H}} K = s > 1. \tag{1.1}$$

The visibility of sets K in Case (3) depends on their rectifiability. It is easy to show that 1-rectifiable sets, which are not \mathcal{H}^1 almost surely covered by a single line, are visible from all points in \mathbb{R}^2 , with possibly one exception, see [11]. On the other hand, if $K \subset \mathbb{R}^2$ is purely 1-unrectifiable, then the sharp bound

$$\dim_{\mathbf{H}}[\mathbb{R}^2 \setminus \operatorname{Inv}(K)] = \dim_{\mathbf{H}}\{p \in \mathbb{R}^2 : K \text{ is visible from } p\} \leq 1.$$

was obtained by Marstrand, building on Besicovitch's projection theorem. For generalisations, improvements and constructions related to the bound above, see [7, Theorem 5.1], and [3,4]. Marstrand raised the question – which remains open to the best of my knowledge – whether it is possible that $\mathcal{H}^1(\mathbb{R}^2 \setminus \operatorname{Inv}(K)) > 0$: in particular, can a purely 1-unrectifiable set be visible from a positive fraction of its own points? For purely 1-unrectifiable self-similar sets $K \subset \mathbb{R}^2$ one has $\operatorname{Inv}(K) = \mathbb{R}^2$, as shown by Simon and Solomyak [13].

Case (3) has received less attention. To simplify the discussion, assume that $\dim_H K = 1$ and $\mathcal{H}^1(K) = 0$, so that the considerations of Case (3) no longer apply, and $\operatorname{Inv}(K) = \mathbb{R}^2$. Then, the relevant question becomes the size of $\operatorname{Inv}_T(K)$. The radial projections π_p fit the influential *generalised projections* framework of Peres and Schlag [12], so one should start by checking, what bounds follow from [12, Theorem 7.3]. If $K \subset \mathbb{R}^2$ is a Borel set with arbitrary dimension $s \in [0, 2]$, then it follows from [12, Theorem 7.3] that

$$\dim_{\mathbf{H}} \operatorname{Inv}_{T}(K) = \dim_{\mathbf{H}} \{ p \in \mathbb{R}^{2} : \dim_{\mathbf{H}} \pi_{p}(K) = 0 \} \le 2 - s.$$
 (1.2)

When s > 1, the bound (1.2) is a weaker version of (1.1), but the benefit of (1.2) is that it holds without any restrictions on s. In particular, if s = 1, one obtains

$$\dim_{\mathbf{H}} \operatorname{Inv}_{T}(K) \le 1. \tag{1.3}$$

This bound is sharp, and quite trivially so: consider the case, where K lies on a single line $\ell \subset \mathbb{R}^2$. Then, $\operatorname{Inv}_T(K) = \ell$. The starting point for this paper was the question: are there essentially different examples manifesting the sharpness of (1.3)? The answer turns out to be negative in a very strong sense. Here are the main results of the paper:

Main Theorem 1.4 (Weak version). Assume that $K \subset \mathbb{R}^2$ is a Borel set with $\dim_H K > 0$. Then, at least one of the following holds:

- $\dim_{\mathbf{H}} \operatorname{Inv}_T(K) = 0$.
- $Inv_T(K)$ is contained on a line.

In fact, more is true. For $K \subset \mathbb{R}^2$, define

$$\operatorname{Inv}_{1/2}(K) := \left\{ p \in \mathbb{R}^2 : \dim_{\mathrm{H}} \pi_p(K \setminus \{p\}) < \frac{\dim_{\mathrm{H}} K}{2} \right\}.$$

Then, if $\dim_H K > 0$, one evidently has $\operatorname{Inv}_T(K) \subset \operatorname{Inv}_{1/2}(K) \subset \operatorname{Inv}(K)$.

Main Theorem 1.5 (Strong version). Theorem 1.4 holds with $\operatorname{Inv}_T(K)$ replaced by $\operatorname{Inv}_{1/2}(K)$. That is, if $E \subset \mathbb{R}^2$ is a Borel set with $\dim_H E > 0$, not contained on a line, then there exists $p \in E$ such that $\dim_H \pi_p(K \setminus \{p\}) \ge (\dim_H K)/2$.

Remark 1.6. A closely related result is Theorem 1.6 in the paper [1] of Bond, Łaba and Zahl; with some imagination, Theorem 1.6(a) in [1] can be viewed as a "single scale" variant of Theorem 1.5. As far as I can tell, proving the Hausdorff dimension statement in this context presents a substantial extra challenge, so Theorem 1.5 is not easily implied by the results in [1].

Example 1.7. Figure 1 depicts the main challenge in the proofs of Theorems 1.4 and 1.5. The

FIGURE 1. What is the next step in the construction of *E*?

set E has $\dim_H E>0$, and consists of something inside a narrow tube T, plus a point $p\notin T$. Then, Theorem 1.4 states that $E\not\subset \operatorname{Inv}_T(K)$ for any compact set $K\subset \mathbb{R}^2$ with $\dim_H K>0$. So, in order to find a counterexample to Theorem 1.5, all one needs to do is find K by a standard "Venetian blind" construction, in such a way that $\dim_H K>0$ and $\dim_H \pi_q(K)=0$ for all $q\in E$. The first steps are obvious: to begin with, require that $K\subset T^*$ for another narrow tube parallel to T, see Figure 1. Then $\pi_q(K)$ is small for all $q\in T$. To handle the remaining point $p\in E$, split the contents of T^* into a finite collection of new narrow tubes in such a way that $\pi_p(K)$ is small. In this manner, $\pi_q(K)$ can be made arbitrarily small for all $q\in E$ (in the sense of ϵ -dimensional Hausdorff content, for instance, for any prescribed $\epsilon>0$). It is quite instructive to think, why the construction cannot be completed: why cannot the "Venetian blinds" be iterated further (for both E and K) so that, at the limit, $\dim_H \pi_q(K) = 0$ for all $q\in E$?

Theorem 1.5 has the following immediate consequence:

Corollary 1.8 (Corollary to Theorem 1.5). *Assume that* $K \subset \mathbb{R}^2$ *is a Borel set, not contained on a line. Then the set of unit vectors spanned by* K*, namely*

$$S(K):=\left\{rac{p-q}{|p-q|}\in S^1: p,q\in K ext{ and } p
eq q
ight\},$$

satisfies $\dim_{\mathrm{H}} S(K) \geq \frac{\dim_{\mathrm{H}} K}{2}$.

Proof. If $\dim_{\mathrm{H}} K = 0$, there is nothing to prove. Otherwise, Theorem 1.5 implies that $K \not\subset \mathrm{Inv}_{1/2}(K)$, whence $\dim_{\mathrm{H}} S(K) \geq \dim_{\mathrm{H}} \pi_p(K \setminus \{p\}) \geq (\dim_{\mathrm{H}} K)/2$ for some $p \in K$.

Corollary 1.8 is probably not sharp, and the following conjecture seems plausible:

Conjecture 1.9. Assume that $K \subset \mathbb{R}^2$ is a Borel set, not contained on a line. Then $\dim_H S(K) = \min\{\dim_H K, 1\}$.

This follows from Marstrand's result, discussed in Case (1) above, when $\dim_H K > 1$. For $\dim_H K \leq 1$, Conjecture 1.9 is closely connected with continuous sum-product problems, which means that significant improvements over Corollary 1.8 will, most likely, require new technology. An ϵ -improvement may be possible, combining the proof below with ideas from the paper [5] of Katz and Tao, and using the discretised sum-product theorem of Bourgain [2].

1.1. **Acknowledgements.** I started working on the question while taking part in the research programme *Fractal Geometry and Dynamics* at Institut Mittag-Leffler. I am grateful to the organisers for letting me participate, and to the staff of the institute for making my stay very pleasant. I would also like to thank Tamás Keleti and Pablo Shmerkin for stimulating conversations, both on this project, and several related topics.

2. Proofs

If $\ell \subset \mathbb{R}^2$ is a line, I denote by $T(\ell,\delta)$ the open (infinite) tube of width 2δ , with ℓ "running through the middle", that is, $\operatorname{dist}(\ell,\mathbb{R}^2\setminus T(\ell,\delta))=\delta$. The notation B(x,r) stands for a closed ball with centre $x\in\mathbb{R}^2$ and radius r>0. The notation $A\lesssim B$ means that there is an absolute constant $C\geq 1$ such that $A\leq CB$.

Lemma 2.1. Assume that μ is a Borel probability measure on $B(0,1) \subset \mathbb{R}^2$, and $\mu(\ell) = 0$ for all lines $\ell \subset \mathbb{R}^2$. Then, for any $\epsilon > 0$, there exists $\delta > 0$ such that $\mu(T(\ell, \delta)) \leq \epsilon$ for all lines $\ell \subset \mathbb{R}^2$.

Proof. Assume not, so there exists $\epsilon>0$, a sequence of positive numbers $\delta_1>\delta_2>\ldots>0$, and a sequence of lines $\{\ell_i\}_{i\in\mathbb{N}}\subset\mathbb{R}^2$ with $\mu(T(\ell_i,\delta_i))\geq\epsilon$. Since $\operatorname{spt}\mu\subset B(0,1)$, one has $\ell_i\cap B(0,1)\neq\emptyset$ for all $i\in\mathbb{N}$. Consequently, there exists a subsequence $(i_j)_{j\in\mathbb{N}}$, and a line $\ell\subset\mathbb{R}^2$ such that $\ell_j\to\ell$ in the Hausdorff metric. Then, for any given $\delta>0$, there exists $j\in\mathbb{N}$ such that

$$B(0,1) \cap T(\ell_{i_i}, \delta_{i_i}) \subset T(\ell, \delta),$$

so that $\mu(T(\ell, \delta)) \ge \epsilon$. It follows that $\mu(\ell) \ge \epsilon$, a contradiction.

The following lemma contains most of the proof of Theorem 1.5:

Lemma 2.2. Assume that μ, ν are Borel probability measures with compact supports $K, E \subset B(0,1)$, respectively. Assume that both measures μ and ν satisfy a Frostman condition with exponents $\kappa_{\mu}, \kappa_{\nu} \in (0,2]$, respectively:

$$\mu(B(x,r)) \le C_{\mu} r^{\kappa_{\mu}} \quad \text{and} \quad \nu(B(x,r)) \le C_{\nu} r^{\kappa_{\nu}}$$
 (2.3)

for all balls $B(x,r) \subset \mathbb{R}^2$, and for some constants $C_{\mu}, C_{\nu} \geq 1$. Assume further that $\mu(\ell) = 0$ for all lines $\ell \subset \mathbb{R}^2$. Fix also

$$0 < \tau < \frac{\kappa_{\mu}}{2}$$
 and $\epsilon > 0$,

and write $\delta_k := 2^{-(1+\epsilon)^k}$.

Then, there exist numbers $\beta = \beta(\kappa_{\mu}, \kappa_{\nu}, \tau) > 0$, $\eta = \eta(\epsilon, \kappa_{\mu}, \kappa_{\nu}, \tau) > 0$, and an index $k_0 = k_0(\epsilon, \mu, \kappa_{\nu}, \tau) \in \mathbb{N}$ with the following properties. For all $k \geq k_0$, there exist

(a) compact sets $K \supset K_{k_0} \supset K_{k_0+1} \dots$ with

$$\mu(K_k) \ge 1 - \sum_{k_0 \le j < k} (\frac{1}{4})^{j-k_0+1} \ge \frac{1}{2},$$
(2.4)

(b) compact sets $E \supset E_{k_0} \supset E_{k_0+1} \dots$ with $\nu(E_k) \ge \delta_k^{\beta}$ with the following property: if $k > k_0$, $p \in E_k$, and $T(\ell_1, \delta_k), \dots, T(\ell_N, \delta_k)$ is a family of tubes of cardinality $N \le \delta_k^{-\tau}$, each containing p, then

$$\mu\left(K_k \cap \bigcup_{j=1}^N T(\ell_j, \delta_k)\right) \le \delta_k^{\eta}. \tag{2.5}$$

Remark 2.6. The index k_0 can be chosen as large as desired; this will be clear from the proof below. It will also be used on many occasions, without separate remark, that δ_k can be assumed very small for all $k \geq k_0$.

Proof. The proof is by induction, starting at the largest scale k_0 , which will be presently defined. Fix $\eta = \eta(\epsilon, \kappa_{\mu}, \kappa_{\nu}, \tau) > 0$ and

$$\Gamma = \Gamma(\epsilon, \kappa_{\mu}, \kappa_{\nu}, \tau). \in \mathbb{N}$$
(2.7)

The number Γ will be specified at the very end of the proof, right before (2.32), and there will be several requirements for the number η , see (2.22), (2.28), and (2.31). Applying Lemma 2.1, first pick an index $k_1 = k_1(\epsilon, \mu, \kappa_{\nu}, \tau) \in \mathbb{N}$ such that $\mu(T(\ell, \delta_{k_1})) \leq (\frac{1}{4})^{\Gamma+1}$ for all tubes $T(\ell, \delta_{k_1}) \subset \mathbb{R}^2$, and

$$\delta_{k-\Gamma}^{\eta} \le \left(\frac{1}{4}\right)^{k-\Gamma+1}, \qquad k \ge k_1. \tag{2.8}$$

Set $k_0 := k_1 + \Gamma$. Then, the following holds for all $k \in \{k_0, \dots, k_0 + \Gamma\}$. For any subset $K' \subset K$, and any tube $T(\ell, \delta_{k-\Gamma}) \subset \mathbb{R}^2$, one has

$$\mu(K' \cap T(\ell, \delta_{k-\Gamma})) \le \mu(T(\ell, \delta_{k_1})) \le (\frac{1}{4})^{\Gamma+1} \le (\frac{1}{4})^{k-k_0+1}.$$
 (2.9)

Define

$$K_k := K$$
 and $E_k := E$, $k_1 \le k \le k_0$.

(The definitions of E_k , K_k for $k_1 \le k < k_0$ are only given for notational convenience.)

I start by giving an outline of how the induction will proceed. Assume that, for a certain $k \ge k_0$, the sets K_k and E_k have been constructed such that

- (i) the condition (2.9) is satisfied with $K' = K_k$, and for all tubes $T(\ell, \delta_{k-\Gamma})$ with $T(\ell, \delta_{k-\Gamma}) \cap E_{k-\Gamma} \neq \emptyset$.
- (ii) K_k and E_k satisfy the measure lower bounds (a) and (b) from the statement of the lemma.

Under the conditions (i)-(ii), I claim that it is possible to find subsets $K_{k+1} \subset K_k$ and $E_{k+1} \subset E_k$, satisfying (ii) at level k+1, and also the non-concentration condition (2.5) at level k+1. This is why (2.5) is only claimed to hold for $k>k_0$, and no one is indeed claiming that it holds for the sets K_{k_0} and E_{k_0} . These sets satisfy (i), however, which should be viewed as a weaker substitute for (2.5) at level k, which is just strong enough to guarantee (2.5) at level k+1. There is one obvious question at this point: if (i) at level k gives (2.5) at level k+1, then where does one get (i) back at level k+1?

If $k+1 \in \{k_0,\ldots,k_0+\Gamma\}$, the condition (i) is simply guaranteed by the choice of k_0 (one does not even need to assume that $T(\ell,\delta_{k-\Gamma})\cap E_{k-\Gamma}\neq\emptyset$). For $k+1>k_0+\Gamma$, this is no longer true. However, for $k+1>\Gamma+k_0$, one has $k+1-\Gamma>k_0$, and thus $K_{k+1-\Gamma}$ and $E_{k+1-\Gamma}$ have already been constructed to satisfy (2.5). In particular, if $E_{k+1-\Gamma}\cap T(\ell,\delta_{k+1-\Gamma})\neq\emptyset$, then

$$\mu(K_{k+1} \cap T(\ell, \delta_{k+1-\Gamma})) \le \mu(K_{k+1-\Gamma} \cap T(\ell, \delta_{k+1-\Gamma})) \le \delta_{k+1-\Gamma}^{\eta} \le (\frac{1}{4})^{(k+1)-k_0+1}$$
 (2.10)

by (2.5) and (2.8). This means that (i) is satisfied at level k + 1, and the induction may proceed.

So, it remains to prove that (i)–(ii) at level k imply (ii) and (2.5) at level k + 1. To avoid clutter, I write

$$\delta := \delta_{k+1}$$
.

Assume that the sets K_k, E_k have been constructed for some $k \geq k_0$, satisfying (i)–(ii). The main task is to understand the structure of the set of points $p \in E_k$ for which (2.5) fails, and these points are denoted by \mathbf{Bad}_k . More precisely, $p \in \mathbf{Bad}_k$, if and only if $p \in E_k$, and there exist $N \leq \delta^{-\tau}$ tubes $T(\ell_1, \delta), \ldots, T(\ell_N, \delta)$, each containing p, such that

$$\mu\left(K_k \cap \bigcup_{j=1}^N T(\ell_j, \delta)\right) > \delta^{\eta}. \tag{2.11}$$

Note that if $\mathbf{Bad}_k = \emptyset$, then one can simply define $E_{k+1} := E_k$ and $K_{k+1} := K_k$, and (ii) and (2.5) (at level k+1) are clearly satisfied.

Instead of analysing \mathbf{Bad}_k directly, it is useful to split it up into "directed" pieces, and digest the pieces individually. To make this precise, let S be the "space of directions"; for concreteness, I identify S with the upper half of the unit circle. Then, if $T = T(\ell, \delta) \subset \mathbb{R}^2$ is a tube, I denote by $\mathrm{dir}(T)$ the unique vector $e \in S$ such that $\ell \| e$.

Recall the small parameter $\eta > 0$, and partition S into $D = \delta^{-\eta}$ arcs J_1, \ldots, J_D of length $\sim \delta^{\eta}$. For $d \in \{1, \ldots, D\}$ fixed ("d" for "direction"), consider the set \mathbf{Bad}_k^d : it consists of those points $p \in E_k$ such that there exist $N \leq \delta^{-\tau}$ tubes $T(\ell_1, \delta), \ldots, T(\ell_N, \delta)$, each containing p, with $\dim(T(\ell_i, \delta)) \in J_d$, and satisfying

$$\mu\left(K_k\cap\bigcup_{j=1}^N T(\ell_j,\delta)\right)>\delta^{2\eta}.$$

Since the direction of every possible tube in \mathbb{R}^2 belongs to one of the arcs J_i , and there are only $D = \delta^{-\eta}$ arcs in total, one has

$$\mathbf{Bad}_k \subset \bigcup_{d=1}^D \mathbf{Bad}_k^d. \tag{2.12}$$

The next task is to understand the structure of \mathbf{Bad}_k^d for a fixed direction $d \in \{1, \dots, D\}$. I claim that \mathbf{Bad}_k^d looks like a garden of flowers, with all the petals pointing in direction J_d , see Figure 2 for a rough idea. To make the statement more precise, I introduce an additional piece of notation. Fox $X \subset K_k$, let $B_d(X)$ consist of those points $p \in E_k$ such that X can be covered by $N \leq \delta^{-\tau}$ tubes $T(\ell_1, \delta), \dots, T(\ell_N, \delta)$, with directions $\mathrm{dir}(T(\ell_i, \delta)) \in J_d$, and each containing p. Then, note that

$$\mathbf{Bad}_k^d = \{ p \in E_k : \exists X \subset K_k \text{ with } \mu(X) > \delta^{2\eta} \text{ and } p \in B_d(X) \}. \tag{2.13}$$

The sets $B_d(X)$ also has the trivial but useful property that

$$X \subset X' \subset K_k \implies B_d(X') \subset B_d(X).$$

¹Here, it might be better style to pick another letter, say $\alpha > 0$, in place of η , since the two parameters play slightly different roles in the proof. Eventually, however, one would end up considering $\min\{\eta,\alpha\}$, and it seems a bit cleaner to let $\eta > 0$ be a "jack of all trades" from the start.

FIGURE 2. The set \mathbf{Bad}_k^d .

There are two steps in establishing the "garden" structure of \mathbf{Bad}_k^d : first, one needs to find the "flowers", and second, one needs to check that the sets obtained actually look like flowers in a non-trivial sense. I start with the former task. Assuming that $\mathbf{Bad}_k^d \neq \emptyset$, pick any point $p_1 \in \mathbf{Bad}_k^d$, and an associated subset $X_1 \subset K_k$ with

$$\mu(X_1) > \delta^{2\eta}$$
 and $p_1 \in B_d(X_1)$.

Then, assume that $p_1, \ldots, p_m \in \mathbf{Bad}_k^d$ and X_1, \ldots, X_m have already been chosen with the properties above, and further satisfying

$$\mu(X_i \cap X_j) \le \delta^{4\eta}/2, \qquad 1 \le i < j \le m. \tag{2.14}$$

Then, see if there still exists a subset $X_{m+1} \subset K_k$ with the following three properties: $\mu(X_{m+1}) > \delta^{2\eta}$, $B_d(X_{m+1}) \neq \emptyset$, and $\mu(X_{m+1} \cap X_i) \leq \delta^{4\eta}/2$ for all $1 \leq i \leq m$. If such a set no longer exists, stop; if it does, pick $p_{m+1} \in B_d(X_{m+1})$, and add X_{m+1} to the list.

It follows from the "competing" conditions $\mu(X_i) > \delta^{2\eta}$, and (2.14), that the algorithm needs to terminate in at most

$$M \le 2\delta^{-4\eta} \tag{2.15}$$

Indeed, assume that the sets X_1, \dots, X_M have already been constructed, and consider the following chain of inequalities:

$$\frac{1}{M} + \frac{1}{M(M-1)} \sum_{i_1 \neq i_2} \mu(X_{i_1} \cap X_{i_2}) \ge \frac{1}{M^2} \sum_{i_1, i_2 = 1}^M \mu(X_{i_1} \cap X_{i_2})$$

$$= \frac{1}{M^2} \int \sum_{i_1, i_2 = 1}^M \mathbf{1}_{X_{i_1} \cap X_{i_2}}(x) \, d\mu(x)$$

$$= \frac{1}{M^2} \int [\operatorname{card}\{1 \le i \le M : x \in X_i\}]^2 \, d\mu(x)$$

$$\ge \frac{1}{M^2} \left(\int \operatorname{card}\{1 \le i \le M : x \in X_i\} \, d\mu(x) \right)^2$$

$$= \frac{1}{M^2} \left(\sum_{i=1}^M \mu(X_i) \right)^2 > \delta^{4\eta}.$$

Thus, if $M > 2\delta^{-4\eta}$, there exists a pair X_{i_1}, X_{i_2} with $i_1 \neq i_2$ such that $\mu(X_{i_1} \cap X_{i_2}) > \delta^{4\eta}/2$, and the algorithm has already terminated earlier. This proves (2.15).

With the sets X_1, \ldots, X_M now defined, write

$$B_d'(X_j) := \{ p \in E_k : \exists X' \subset X_j \text{ with } \mu(X') > \delta^{4\eta}/2 \text{ and } p \in B_d(X') \}.$$

I claim that

$$\mathbf{Bad}_k^d \subset \bigcup_{j=1}^M B_d'(X_j). \tag{2.16}$$

Indeed, if $p \in \mathbf{Bad}_k^d$, then $p \in B_d(X)$ for some $X \subset K_k$ with $\mu(X) > \delta^{2\eta}$ by (2.13). It follows that

$$\mu(X \cap X_j) > \delta^{4\eta}/2 \tag{2.17}$$

for one of the sets X_j , $1 \le j \le M$, because either $X \in \{X_1, \dots, X_M\}$, and (2.17) is clear (all the sets X_j even satisfy $\mu(X_j) > \delta^{2\eta}$), or else (2.17) must hold by virtue of X **not** having been added to the list X_1, \dots, X_M in the algorithm. But (2.17) implies that $p \in B'_d(X_j)$, since $X' = X \cap X_j \subset X_j$ satisfies $\mu(X') > \delta^{4\eta}/2$ and $p \in B_d(X) \subset B_d(X')$.

According to (2.15) and (2.16) the set \mathbf{Bad}_k^d can be covered by $M \leq 2\delta^{-4\eta}$ sets of the form $B'_d(X_j)$, see Figure 2. These sets are the "flowers", and their structure is explored in the next lemma:

Lemma 2.18. The following holds, if $\delta = \delta_{k+1}$ is small enough. For $1 \le d \le D$ and $1 \le j \le M$ fixed, the set $B'_d(X_j)$ can be covered by $\le 4\delta^{-8\eta}$ tubes of the form $T = T(\ell, \delta^\rho)$, where $\operatorname{dir}(T) \in J_d$, and $\rho = \rho(\kappa_\mu, \tau) > 0$. The tubes can be chosen to contain the point $p_j \in B_d(X_j)$.

Proof. Fix $1 \leq j \leq M$ and $p \in B'_d(X_j)$. Recall the point $p_j \in B_d(X_j)$ from the definition of X_j . By definition of $p \in B'_d(X_j)$, there exists a set $X' \subset X_j$ with $\mu(X') > \delta^{4\eta}/2$ and $p \in B_d(X')$. Unwrapping the definitions further, there exist $N \leq \delta^{-\tau}$ tubes $T(\ell_1, \delta), \ldots, T(\ell_N, \delta)$, the union of which covers X', and each satisfies $\text{dir}(T(\ell_i, \delta)) \in J_d$ and $p \in T(\ell_i, \delta)$. In particular, one of these tubes, say $T_p = T(\ell_i, \delta)$, has

$$\mu(X_i \cap T_p) \ge \mu(X' \cap T_p) \ge \mu(X') \cdot \delta^{\tau} \ge \delta^{4\eta + \tau}/2 \ge \delta^{8\eta + \tau}/4. \tag{2.19}$$

(The final inequality is for just a triviality at this point, but is useful for later technical purposes later.) Here comes perhaps the most basic geometric observation in the proof: if the measure lower bound (2.19) holds for some δ -tube T – this time T_p – and a sufficiently small $\eta > 0$ (crucially so small that $8\eta + \tau < \kappa/2$), then the whole set $B_d(X_j)$ is actually contained in a neighbourhood of T, called T^* , because $X_j \cap T$ is so difficult to cover by δ -tubes centred at points outside T^* , see Figure 3. In particular, in the present case,

$$p_j \in B_d(X_j) \subset T(\ell_i, \delta^{4\rho}) =: T_p^*$$
(2.20)

for a suitable constant $\rho=\rho(\kappa_\mu,\tau)>0$, specified in (2.22). To see this formally, pick $q\in B(0,1)\setminus T_p^*$, and argue as follows to show that $q\notin B_d(X_j)$. First, any δ -tube T containing q, and intersecting $T_p\cap B(0,1)$, makes an angle of at least $\gtrsim \delta^{4\rho}$ with T_p . It follows that

$$\operatorname{diam}(T \cap T_p \cap B(0,1)) \lesssim \delta^{1-4\rho}$$

FIGURE 3. Covering $X_i \cap T_p$ by tubes centred at points outside T_n^* .

and consequently $\mu(T \cap T_p \cap B(0,1)) \lesssim C_{\mu} \delta^{\kappa_{\mu}(1-4\rho)}$. So, in order to cover $X_j \cap T_p$ (let alone the whole set X_j) it takes by (2.19) at least

$$\gtrsim \frac{\mu(X_j \cap T_p)}{C_\mu \delta^{\kappa_\mu (1 - 4\rho)}} \ge \frac{\delta^{8\eta + \tau - \kappa_\mu (1 - 4\rho)}}{C_\mu} \ge \frac{\delta^{8\eta - \kappa_\mu / 2 + 8\rho}}{C_\mu} \tag{2.21}$$

tubes T containing q. But if

$$0 < 8\eta < \frac{\frac{\kappa_{\mu}}{2} - \tau}{2} \quad \text{and} \quad 8\rho = \frac{\frac{\kappa_{\mu}}{2} - \tau}{2}, \tag{2.22}$$

then the number on the right hand side of (2.21) is far larger than $\delta^{-\tau}$, which means that $q \notin B_d(X_j)$, and proves (2.20).

Recall the statement of the Lemma 2.18, and compare it with the previous accomplishment: (2.20) states that whenever $p \in B'_d(X_j)$, then p lies in a certain tube of width $\delta^{4\rho}$ (namely T_p), which has direction in J_d , and also contains p_j . This sounds a bit like the statement of the lemma, but there is a problem: in principle, every point $p \in B'(X_j)$ could give rise to a different tube T_p . So, it essentially remains to show that all these $\delta^{4\rho}$ -tubes T_p can be covered by a small number of tubes of width δ^ρ . To begin with, note that the ball $B_j := B(p_j, \delta^{2\rho})$ can be covered by a single tube of width δ^ρ , in any direction desired. So, to prove the lemma, it remains to cover $B'_d(X_j) \setminus B_j$.

Note that if p,q satisfy $|p-q| \geq \delta^{2\rho}$, then the direction of any $\delta^{4\rho}$ -tube containing both p,q lies in a fixed arc $J(p,q) \subset S$ of length $|J(p,q)| \lesssim \delta^{4\rho}/\delta^{2\rho} = \delta^{2\rho}$. As a corollary, the union of all $\delta^{4\rho}$ -tubes containing p,q, intersected with B(0,1), is contained in a single tube of width $\sim \delta^{2\rho}$. In particular, this union (still intersected with B(0,1)) is contained in a single δ^{ρ} -tube, assuming that $\delta>0$ is small; this tube can be chosen to be a δ^{ρ} -tube around an arbitrary $\delta^{4\rho}$ -tube containing both p and q.

The tube-cover of $B'_d(X_j)\setminus B_j$ can now be constructed by adding one tube at a time. First, assume that there is a point $q_1\in B'_d(X_j)\setminus B_j$, and find a tube $T(\ell_1,\delta^{4\rho})$ containing both q and p_j , with direction in J_d ; existence follows from (2.20). Add the tube $T(\ell_1,\delta^{\rho})$ to the tube-cover of $B'_d(X_j)\setminus B_j$, and recall from the previous paragraph that $T(\ell_1,\delta^{\rho})$ now contains $T\cap B(0,1)$ for **any** $\delta^{4\rho}$ -tube $T\supset \{q_1,p_j\}$ (of which $T=T(\ell_1,\delta^{4\rho})$ is just one example). Finally, by definition of $q_1\in B'_d(X_j)$, associate to q_1 a subset $X'_1\subset X_j$ with

$$\mu(X_1') > \delta^{4\eta}/2$$
 and $q_1 \in B_d(X_1')$. (2.23)

Assume that the points $q_1, \ldots, q_H \in B'_d(X_j) \setminus B_j$, along with the associated tubes $\{q_i, p_j\} \subset T(\ell_i, \delta^{4\rho}) \subset T(\ell_i, \delta^{\rho})$, and subsets $X'_i \subset X_j$, as in (2.23), have already been constructed. Assume inductively that

$$\mu(X'_{i_1} \cap X'_{i_2}) \le \delta^{8\eta}/4, \qquad 1 \le i_1 < i_2 \le H.$$
 (2.24)

To proceed, pick any point $q_{H+1} \in B'_d(X_j) \backslash B_j$, and associate to q_{H+1} a subset $X'_{H+1} \subset X_j$ with $\mu(X'_{H+1}) > \delta^{4\rho}/2$ and $q_{H+1} \in B_d(X'_{H+1})$. Then, test whether (2.24) still holds, that is, whether $\mu(X'_{H+1} \cap X'_i) \leq \delta^{8\eta}_{k+1}/4$ for all $1 \leq i \leq H$. If such a point q_{H+1} can be chosen, run the argument from the previous paragraph, first locating a tube $T(\ell_{H+1}, \delta^{4\rho})$ containing both q_{H+1} and p_j , with direction in J_d , and finally adding $T(\ell_{H+1}, \delta^{\rho})$ to the tube-cover under construction.

The "competing" conditions $\mu(X_i') > \delta^{4\eta}/2$, and (2.24), guarantee that the algorithm terminates in

$$H < 4\delta^{-8\eta}$$

steps. The argument is precisely the same as used to prove (2.15), so I omit it. Once the algorithm has terminated, I claim that all points of $B'_d(X_j) \setminus B_j$ are covered by the tubes $T(\ell_i, \delta^\rho)$, with $1 \le i \le H$. To see this, pick $q \in B'_d(X_j) \setminus B_j$, and a subset $X' \subset X_j$ with $\mu(X') > \delta^{4\eta}/2$, and $q \in B_d(X')$. Since the algorithm had already terminated, it must be the case that

$$\mu(X' \cap X_i') > \delta^{8\eta}/4$$

for some index $1 \le i \le H$. Since $X'' := X' \cap X'_i \subset X'$ and consequently $q \in B_d(X'')$, one can find a tube $T_q = T(\ell_q, \delta) \ni q$ with $\operatorname{dir}(T_q) \in J_d$, and satisfying

$$\mu(X_i' \cap T_a) \ge \mu(X'' \cap T_a) \ge \mu(X'') \cdot \delta^{\tau} > \delta^{8\eta + \tau}/4.$$

This lower bound is precisely the same as in (2.19). Hence, it follows from the same argument, which gave (2.20), that

$$q_i \in B_d(X_i') \subset T(\ell_a, \delta^{4\rho}).$$

Since $X_i' \subset X_j$, also $p_i \in B_d(X_i) \subset B_d(X_i') \subset T(\ell_q, \delta^{4\rho})$. So,

$$\{q, q_i, p_j\} \subset B(0, 1) \cap T(\ell_q, \delta^{4\rho}).$$
 (2.25)

In particular, $T(\ell_q, \delta^{4\rho})$ is a $\delta^{4\rho}$ -tube containing both q_i, p_j , and hence

$$B(0,1) \cap T(\ell_q, \delta^{4\rho}) \subset T(\ell_i, \delta^{\rho}).$$

Combined with (2.25), this yields $q \in T(\ell_i, \delta^{\rho})$, as claimed. This concludes the proof of Lemma 2.18.

Combining (2.15)-(2.16) with Lemma 2.18, the structural description of \mathbf{Bad}_k^d is now complete: \mathbf{Bad}_d^k is covered by

$$\leq M \cdot 4\delta^{-8\eta} \leq 8\delta^{-12\eta} \tag{2.26}$$

tubes of width δ^{ρ} , with directions in J_d . For non-adjacent $d_1, d_2 \in \{1, \dots, D\}$ (the ordering of indices corresponds to the ordering of the arcs $J_d \subset S$), the covering tubes are then fairly transversal. This is can be used to infer that most point in E_k do not lie in many different sets \mathbf{Bad}_k^d . Indeed, consider the set \mathbf{BadBad}_k of those points in \mathbb{R}^2 , which lie in (at least) two sets $\mathbf{Bad}_k^{d_1}$ and $\mathbf{Bad}_k^{d_2}$ with $|d_2 - d_1| > 1$. By Lemma 2.18, such points lie in

the intersection of some pair of tubes $T_1 = T(\ell_1, \delta^{\rho})$ and $T_2 = T(\ell_2, \delta^{\rho})$ with $dir(T_i) \in J_{d_i}$. The angle between these tubes is $\gtrsim \delta^{\eta}$, whence

$$\operatorname{diam}(T_1 \cap T_2) \lesssim \delta^{\rho - \eta}$$
,

and consequently

$$\nu(T_1 \cap T_2) \lesssim C_{\nu} \delta^{\kappa_{\nu}(\rho - \eta)} \leq C_{\nu} \delta^{\kappa_{\nu}\rho - 2\eta}. \tag{2.27}$$

For $d \in \{1, ..., D\}$ fixed, there correspond $\lesssim \delta^{-12\eta}$ tubes in total, as pointed out in (2.26). So, the number of pairs T_1, T_2 , as above, is bounded by

$$\lesssim D^2 \cdot \delta^{-24\eta} \leq \delta^{-26\eta}$$
.

Consequently, by (2.27),

$$\nu(\mathbf{BadBad}_k) \lesssim C_{\nu} \delta^{-28\eta + \kappa_{\nu}\rho}$$
.

This upper bound is far smaller than $\nu(E_k)/2 \ge \delta_k^{\beta}/2$, assuming that

$$0 < \beta < \kappa_{\nu}\rho - 28\eta. \tag{2.28}$$

Given that $28\eta < \kappa_{\nu}\rho/2$, one is free to make such an assumption on β (it holds for $k=k_0$, since $\nu(E_{k_0})=1$), but the smaller β is, the more difficult it becomes be to ensure that $\nu(E_{k+1}) \geq \delta_{k+1}^{\beta}$. To see that this can be done, start by writing $G_k := E_k \setminus \mathbf{BadBad}_k$, so that

$$\nu(G_k) \ge \nu(E_k)/2 \ge \delta_k^{\beta}/2$$

by the choice of β . Now, either

$$\nu\left(G_k \cap \mathbf{Bad}_k\right) \ge \frac{\nu(G_k)}{2} \quad \text{or} \quad \nu\left(G_k \cap \mathbf{Bad}_k\right) < \frac{\nu(G_k)}{2}. \tag{2.29}$$

The latter case is quick and easy: set $E_{k+1} := G_k \setminus \mathbf{Bad}_k$ and $K_{k+1} := K_k$. Then $\nu(E_{k+1}) \ge \nu(E_k)/4 \ge \delta_{k+1}^{\beta}$ (assuming that $k \ge k_0$ is large enough). Moreover, the set E_{k+1} no longer contains any points in \mathbf{Bad}_k , so (2.5) is satisfied at level k+1, by the very definition of \mathbf{Bad}_k , see (2.11).

So, it remains to treat the first case in (2.29). Start by recalling from (2.12) that \mathbf{Bad}_k is covered by the sets \mathbf{Bad}_k^d , $1 \le d \le D$, so

$$\nu(G_k \cap \mathbf{Bad}_k^d) \geq \frac{\nu(G_k)}{2D} \geq \frac{\delta^{\eta} \delta_k^{\beta}}{4} = \frac{\delta^{\eta + \beta/(1+\epsilon)}}{4}$$

for some fixed $d \in \{1, ..., D\}$. Then, recall from (2.26) that \mathbf{Bad}_k^d can be covered by $\leq 8\delta^{-12\eta}$ tubes of the form $T(\ell, \delta^\rho)$, with directions in J_d . It follows that there exists a fixed tube $T_0 = T(\ell_0, \delta^\rho)$ such that

$$\operatorname{dir}(T_0) \in J_d \quad \text{and} \quad \nu(G_k \cap T_0 \cap \mathbf{Bad}_k^d) \ge \frac{\delta^{13\eta + \beta/(1+\epsilon)}}{32}.$$
 (2.30)

So, to ensure $\nu(G_k \cap T_0 \cap \mathbf{Bad}_k^d) \ge \delta^{\beta}$, choose $\eta > 0$ so small that

$$13\eta + \beta/(1+\epsilon) < \beta. \tag{2.31}$$

To convince the reader that there is no circular reasoning at play, I gather here all the requirements for β and η (harvested from (2.22), (2.28), and (2.31)):

$$0 < \beta < \frac{\kappa_{\nu}\rho}{2}$$
 and $0 < \eta < \min\left\{\frac{\kappa_{\mu}/2 - \tau}{2}, \frac{\kappa_{\nu}\rho}{56}, \frac{\epsilon\beta}{1 + \epsilon}\right\}$

With such choices of β , η , recalling (2.30), and assuming that δ is small enough, the set

$$E_{k+1} := G_k \cap T_0 \cap \mathbf{Bad}_k^d$$
.

satisfies $\nu(E_{k+1}) \ge \delta^{\beta}$, which is statement (b) from the lemma. It remains to define K_{k+1} . To this end, recall that T_0 is a tube around the line $\ell_0 \subset \mathbb{R}^2$. Define

$$K_{k+1} := K_k \setminus T(\ell_0, \delta^{\eta/2}).$$

Then, assuming that $\eta/2$ has the form $\eta/2=(1+\epsilon)^{-\Gamma-1}$ for an integer $\Gamma=\Gamma(\epsilon,\kappa_{\mu},\kappa_{\nu},\tau)\in\mathbb{N}$ (this is finally the integer from (2.7)), one has

$$\delta^{\eta/2} = \delta_{k-\Gamma}.\tag{2.32}$$

Since $T(\ell_0, \delta_{k-\Gamma}) \cap E_{k-\Gamma} \neq \emptyset$, it follows from the induction hypothesis (i) that

$$\mu(K_k \cap T(\ell, \delta_{k-\Gamma})) \le (\frac{1}{4})^{k-k_0+1}$$
.

Consequently,

$$\mu(K_{k+1}) \ge \mu(K_k) - (\frac{1}{4})^{k-k_0+1} \ge 1 - \sum_{k_0 \le j \le k+1} (\frac{1}{4})^{j-k_0+1},$$

which is the desired lower bound from (a) of the statement of the lemma. So, it remains to verify the non-concentration condition (2.5) for E_{k+1} and K_{k+1} . To this end, pick $p \in E_{k+1}$. First, observe that every tube $T = T(\ell, \delta)$, which contains p and has non-empty intersection with $K_{k+1} \subset B(0,1) \setminus T(\ell, \delta^{\eta/2})$, forms an angle $\gtrsim \delta^{\eta/2}$ with T_0 . In particular, this angle is far larger than δ^{η} . Since $\operatorname{dir}(T_0) \in J_d$ by (2.30), this implies that $\operatorname{dir}(T) \in J_{d'}$ for some |d' - d| > 1.

Now, if the non-concentration condition (2.5) still failed for $p \in E_{k+1}$, there would exist $N \leq \delta^{-\tau}$ tubes $T(\ell_1, \delta), \dots, T(\ell_N, \delta)$, each containing p, and with

$$\mu\left(K_{k+1}\cap\bigcup_{i=1}^{N}T(\ell_{i},\delta)\right)>\delta^{\eta}.$$

By the pigeonhole principle, it follows that the tubes $T(\ell_i, \delta)$ with $\operatorname{dir}(T_i) \in J_{d'}$, for some fixed arc $J_{d'}$, cover a set $X \subset K_{k+1} \subset K_k$ of measure $\mu(X) > \delta^{2\eta}$. This means precisely that $p \in \operatorname{Bad}_k^{d'}$, and by the observation in the previous paragraph, |d-d'| > 1. But $p \in E_{k+1} \subset \operatorname{Bad}_k^d$ by definition, so this would imply that $p \in \operatorname{BadBad}_k$, contradicting the fact that $p \in E_{k+1} \subset G_k$. This completes the proof of (2.5), and the lemma.

The proof of Theorem 1.5 is now quite standard:

Proof of Theorem 1.5. Write $s:=\dim_{\mathrm{H}} K$, and assume that s>0 and $\dim_{\mathrm{H}} E>0$. Make a counter assumption: E is not contained on a line, but $\dim_{\mathrm{H}} \pi_p(K) < s/2$ for all $p \in E$. Then, find t < s/2, and a positive-dimensional subset $\tilde{E} \subset E$, not contained on any single line, with $\dim_{\mathrm{H}} \pi_p(K) \leq t$ for all $p \in \tilde{E}$ (if your first attempt at \tilde{E} lies on some line ℓ , simply add a point $p_0 \in E \setminus \ell$ to \tilde{E} , and replace t by $\max\{t, \dim_{\mathrm{H}} \pi_{p_0}(K)\} < s/2$). So, now \tilde{E} satisfies the same hypotheses as E, but with "< s/2" replaced by " $\le t < s/2$ ". Thus, without loss of generality, one may assume that

$$\dim_{\mathbf{H}} \pi_p(K) \le t < s/2, \qquad p \in E. \tag{2.33}$$

Using Frostman's lemma, pick probability measures μ, ν with spt $\mu \subset K$ and spt $\nu \subset E$, and satisfying the growth bounds (2.3) with exponents $0 < \kappa_{\mu} < s$ and $\kappa_{\nu} > 0$. Pick, moreover, κ_{μ} so close to s that

$$\kappa_{\mu}/2 > t. \tag{2.34}$$

Observe that $\mu(\ell) = 0$ for all lines $\ell \subset \mathbb{R}^2$. Indeed, if $\mu(\ell) > 0$ for some line $\ell \subset \mathbb{R}^2$, then there exists $p \in E \setminus \ell$ by assumption, and

$$\dim_{\mathrm{H}} \pi_p(K) \geq \dim_{\mathrm{H}} \pi_p(\operatorname{spt} \mu \cap \ell) \geq \kappa_{\mu} > t$$

violating (2.33) at once. Finally, by restricting the measures μ and ν slightly, one may assume that they have disjoint supports.

In preparation for using Lemma 2.2, fix $\epsilon > 0$, $0 < \tau < \kappa_{\mu}/2$ in such a way that

$$\frac{\tau}{(1+\epsilon)^2} > t. \tag{2.35}$$

This is possible by (2.34). Then, apply Lemma 2.2 to find the parameters β , $\eta > 0$, $k_0 \in \mathbb{N}$, and the sets spt $\mu \supset K_{k_0} \supset K_{k_0+1} \supset \ldots$ and spt $\nu \supset E_{k_0} \supset E_{k_0+1} \supset \ldots$ Write

$$K' := \bigcap_{k \geq k_0} K_k \subset \operatorname{spt} \mu \quad \text{and} \quad E' := \bigcap_{k \geq k_0} E_k \subset \operatorname{spt} \nu.$$

Both sets are non-empty and compact (being intersections of nested sequences of non-empty compact sets), $\mu(K') \ge \frac{1}{2}$, and $K' \cap E' = \emptyset$. Pick $p \in E'$. I claim that

$$\dim_{\mathbf{H}} \pi_p(K') \ge \frac{\tau}{(1+\epsilon)^2},\tag{2.36}$$

which violates (2.33) by (2.35). If not, cover $\pi_p(K)$ by efficiently by arcs J_1, J_2, \ldots of lengths restricted to the values $\delta_k = 2^{-(1+\epsilon)^k}$, with $k \geq k_0$. More precisely: assuming that (2.36) fails, start with an arbitrary efficient cover $\tilde{J}_1, \tilde{J}_2, \ldots$ by arcs of length $|\tilde{J}_i| \leq \delta_{k_0}$, satisfying

$$\sum_{j\geq 1} |\tilde{J}_j|^{\tau/(1+\epsilon)^2} \leq 1.$$

Then, replace each \tilde{J}_j by the shortest concentric arc $J_j \supset \tilde{J}_j$, whose length is of the form δ_k . Note that $\ell(J_j) \leq \ell(\tilde{J}_j)^{1/(1+\epsilon)}$, so that

$$\sum_{j\geq 1} |J_j|^{\tau/(1+\epsilon)} \leq \sum_{j\geq 1} |\tilde{J}_j|^{\tau/(1+\epsilon)^2} \leq 1.$$

The arcs J_1, J_2, \ldots now cover $\pi_p(K')$, and there are $\leq \delta_k^{-\tau/(1+\epsilon)}$ arcs of any fixed length δ_k . Since $p \notin K'$, for every $k \geq k_0$ there exists a collection of tubes \mathcal{T}_k of the form $T(\ell, \delta_k) \ni p$, such that $|\mathcal{T}_k| \lesssim \delta_k^{-\tau/(1+\epsilon)}$ (the implicit constant depends on $\mathrm{dist}(p, K')$), and

$$K' \subset \bigcup_{k \geq k_0} \bigcup_{T \in \mathcal{T}_k} T.$$

In particular $|\mathcal{T}_k| \leq \delta_k^{-\tau}$, assuming that δ_k is small enough for all $k \geq k_0$. Recall that $\mu(K') \geq \frac{1}{2}$. Hence, by the pigeonhole principle, one can find $k \in \mathbb{N}$ such that the following holds: there is a subset $K'_k \subset K'$ with $\mu(K'_k) \geq \frac{1}{100k^2}$ such that K'_k is covered by the tubes in \mathcal{T}_k . But $1/(100k^2)$ is far larger than δ_k^{η} , so this is explicitly ruled out by

non-concentration estimate in Lemma 2.2, namely (2.5). This contradiction completes the proof.

REFERENCES

- [1] M. BOND, I. ŁABA, AND J. ZAHL: *Quantitative visibility estimates for unrectifiable sets in the plane*, Trans. Amer. Math. Soc. **368**(8) (2016), 5475-5513
- [2] J. BOURGAIN: On the Erdős-Volkmann and Katz-Tao ring conjectures, Geom. Funct. Anal. 13(2) (2003), 334-365
- [3] M. CSÖRNYEI: On the visibility of invisible sets, Ann. Acad. Sci. Fenn. Math. 25(2) (2000), 417-421
- [4] M. CSÖRNYEI: How to mame Davies' theorem visible, Bull. London Math. Soc. 33(1) (2001), 59-66
- [5] N. H. KATZ AND T. TAO: Some connections between Falconer's distance set conjecture and sets of Furstenburg type, New York J. Math. 7 (2001), 149-187
- [6] J. M. MARSTRAND: Some fundamental geometrical properties of plane sets of fractional dimensions, Proc. London Math. Soc. 4 (3) (1954), 257-302
- [7] P. MATTILA: Integral geometric properties of capacities, Trans. Amer. Math. Soc. 226(2) (1981), 539-554
- [8] P. MATTILA: Hausdorff dimension, projections, and the Fourier transform, Publ. Mat. 48(1) (2004), 3-48
- [9] P. MATTILA AND T. ORPONEN: Hausdorff dimension, intersections of projections and exceptional plane sections, Proc. Amer. Math. Soc. 144(8) (2016), 3419-3430
- [10] T. ORPONEN: A sharp exceptional set estimate for visibility, Bull. London Math. Soc. (to appear), arXiv:1602.07629
- [11] T. ORPONEN AND T. SAHLSTEN: *Radial projections of rectifiable sets*, Ann. Acad. Sci. Fenn. Math. **36**(2) (2011), 677-681
- [12] Y. PERES AND W. SCHLAG: Smoothness of projections, Bernoulli convolutions, and the dimension of exceptions, Duke Math. J. 102(2) (2000), 193-251
- [13] K. SIMON AND B. SOLOMYAK: Visibility for self-similar sets of dimension one in the plane, Real Anal. Exchange 32(1) (2006/2007), 67-78

UNIVERSITY OF HELSINKI, DEPARTMENT OF MATHEMATICS AND STATISTICS *E-mail address*: tuomas.orponen@helsinki.fi