
ON THE VISIBILITY OF PLANAR SETS

TUOMAS ORPONEN

ABSTRACT. Assume that E,K ⊂ R2 are Borel sets with dimHK > 0. Is a positive di-
mensional part of K visible from some point in E? Not necessarily, since E can be zero-
dimensional, or E and K can lie on a common line. I prove that these are the only ob-
structions: if dimHE > 0, and E does not lie on a line, then there exists a point in E from
which a (dimHK)/2 dimensional part of K is visible. Applying the result with E = K
gives the following corollary: if K ⊂ R2 is Borel set, which does not lie on a line, then the
set of directions spanned by K has Hausdorff dimension at least (dimHK)/2.

1. INTRODUCTION

This paper studies visibility and radial projections in the plane. Given p ∈ R2, define
the radial projection πp : R2 \ {p} → S1 by

πp(q) =
p− q
|p− q|

.

A Borel set K ⊂ R2 will be called
• invisible from p, ifH1(πp(K \ {p})) = 0, and
• totally invisible from p, if dimH πp(K \ {p}) = 0.

Above, dimH andHs stand for Hausdorff dimension and s-dimensional Hausdorff mea-
sure, respectively. I will only consider Hausdorff dimension in this paper, as many of
the results below would be much easier for box dimension. The study of (in-)visibility
has a long tradition in geometric measure theory. For many more results and questions
than I can introduce here, see Section 6 of Mattila’s survey [8]. The basic question is the
following: given a Borel set K ⊂ R2, how large can the sets

Inv(K) = {p ∈ R2 : K is invisible from p}

and
InvT (K) := {p ∈ R2 : K is strongly invisible from p}

be? Clearly InvS(K) ⊂ Inv(K), and one generally expects InvS(K) to be significantly
smaller than Inv(K). The existing results fall roughly into the following three categories:

(1) What happens if dimHK > 1?
(2) What happens if dimHK ≤ 1?
(3) What happens if 0 < H1(K) <∞?
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Cases (1) and (3) are the most classical, having already been studied in the 1954 paper
[6] of Marstrand. Given s > 1, Marstrand proved that any Borel set K ⊂ R2 with 0 <
Hs(K) < 1 is visible (that is, not invisible) from Lebesgue almost every point p ∈ R2,
and also from Hs almost every point p ∈ K. Unifying Marstrand’s results, the following
sharp bound was recently established by Mattila and the author in [9] and [10]:

dimH Inv(K) ≤ 2− s, dimHK = s > 1. (1.1)

The visibility of sets K in Case (3) depends on their rectifiability. It is easy to show
that 1-rectifiable sets, which are notH1 almost surely covered by a single line, are visible
from all points in R2, with possibly one exception, see [11]. On the other hand, if K ⊂ R2

is purely 1-unrectifiable, then the sharp bound

dimH[R2 \ Inv(K)] = dimH{p ∈ R2 : K is visible from p} ≤ 1.

was obtained by Marstrand, building on Besicovitch’s projection theorem. For general-
isations, improvements and constructions related to the bound above, see [7, Theorem
5.1], and [3, 4]. Marstrand raised the question – which remains open to the best of my
knowledge – whether it is possible that H1(R2 \ Inv(K)) > 0: in particular, can a purely
1-unrectifiable set be visible from a positive fraction of its own points? For purely 1-
unrectifiable self-similar sets K ⊂ R2 one has Inv(K) = R2, as shown by Simon and
Solomyak [13].

Case (3) has received less attention. To simplify the discussion, assume that dimHK =
1 and H1(K) = 0, so that the considerations of Case (3) no longer apply, and Inv(K) =
R2. Then, the relevant question becomes the size of InvT (K). The radial projections πp fit
the influential generalised projections framework of Peres and Schlag [12], so one should
start by checking, what bounds follow from [12, Theorem 7.3]. If K ⊂ R2 is a Borel set
with arbitrary dimension s ∈ [0, 2], then it follows from [12, Theorem 7.3] that

dimH InvT (K) = dimH{p ∈ R2 : dimH πp(K) = 0} ≤ 2− s. (1.2)

When s > 1, the bound (1.2) is a weaker version of (1.1), but the benefit of (1.2) is that it
holds without any restrictions on s. In particular, if s = 1, one obtains

dimH InvT (K) ≤ 1. (1.3)

This bound is sharp, and quite trivially so: consider the case, where K lies on a single
line ` ⊂ R2. Then, InvT (K) = `. The starting point for this paper was the question: are
there essentially different examples manifesting the sharpness of (1.3)? The answer turns
out to be negative in a very strong sense. Here are the main results of the paper:

Main Theorem 1.4 (Weak version). Assume that K ⊂ R2 is a Borel set with dimHK > 0.
Then, at least one of the following holds:

• dimH InvT (K) = 0.
• InvT (K) is contained on a line.

In fact, more is true. For K ⊂ R2, define

Inv1/2(K) :=
{
p ∈ R2 : dimH πp(K \ {p}) < dimHK

2

}
.

Then, if dimHK > 0, one evidently has InvT (K) ⊂ Inv1/2(K) ⊂ Inv(K).



ON THE VISIBILITY OF PLANAR SETS 3

Main Theorem 1.5 (Strong version). Theorem 1.4 holds with InvT (K) replaced by Inv1/2(K).
That is, ifE ⊂ R2 is a Borel set with dimHE > 0, not contained on a line, then there exists p ∈ E
such that dimH πp(K \ {p}) ≥ (dimHK)/2.

Remark 1.6. A closely related result is Theorem 1.6 in the paper [1] of Bond, Łaba and
Zahl; with some imagination, Theorem 1.6(a) in [1] can be viewed as a "single scale"
variant of Theorem 1.5. As far as I can tell, proving the Hausdorff dimension statement
in this context presents a substantial extra challenge, so Theorem 1.5 is not easily implied
by the results in [1].

Example 1.7. Figure 1 depicts the main challenge in the proofs of Theorems 1.4 and 1.5. The

KE

p

p

T

T
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FIGURE 1. What is the next step in the construction of E?

set E has dimHE > 0, and consists of something inside a narrow tube T , plus a point p /∈ T .
Then, Theorem 1.4 states that E 6⊂ InvT (K) for any compact set K ⊂ R2 with dimHK > 0.
So, in order to find a counterexample to Theorem 1.5, all one needs to do is find K by a standard
"Venetian blind" construction, in such a way that dimHK > 0 and dimH πq(K) = 0 for all
q ∈ E. The first steps are obvious: to begin with, require that K ⊂ T ∗ for another narrow tube
parallel to T , see Figure 1. Then πq(K) is small for all q ∈ T . To handle the remaining point
p ∈ E, split the contents of T ∗ into a finite collection of new narrow tubes in such a way that
πp(K) is small. In this manner, πq(K) can be made arbitrarily small for all q ∈ E (in the sense of
ε-dimensional Hausdorff content, for instance, for any prescribed ε > 0). It is quite instructive to
think, why the construction cannot be completed: why cannot the "Venetian blinds" be iterated
further (for both E and K) so that, at the limit, dimH πq(K) = 0 for all q ∈ E?

Theorem 1.5 has the following immediate consequence:

Corollary 1.8 (Corollary to Theorem 1.5). Assume that K ⊂ R2 is a Borel set, not contained
on a line. Then the set of unit vectors spanned by K, namely

S(K) :=
{
p−q
|p−q| ∈ S

1 : p, q ∈ K and p 6= q
}
,

satisfies dimH S(K) ≥ dimHK
2 .

Proof. If dimHK = 0, there is nothing to prove. Otherwise, Theorem 1.5 implies thatK 6⊂
Inv1/2(K), whence dimH S(K) ≥ dimH πp(K \ {p}) ≥ (dimHK)/2 for some p ∈ K. �

Corollary 1.8 is probably not sharp, and the following conjecture seems plausible:

Conjecture 1.9. Assume thatK ⊂ R2 is a Borel set, not contained on a line. Then dimH S(K) =
min{dimHK, 1}.
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This follows from Marstrand’s result, discussed in Case (1) above, when dimHK > 1.
For dimHK ≤ 1, Conjecture 1.9 is closely connected with continuous sum-product prob-
lems, which means that significant improvements over Corollary 1.8 will, most likely,
require new technology. An ε-improvement may be possible, combining the proof below
with ideas from the paper [5] of Katz and Tao, and using the discretised sum-product
theorem of Bourgain [2].

1.1. Acknowledgements. I started working on the question while taking part in the re-
search programme Fractal Geometry and Dynamics at Institut Mittag-Leffler. I am grateful
to the organisers for letting me participate, and to the staff of the institute for making
my stay very pleasant. I would also like to thank Tamás Keleti and Pablo Shmerkin for
stimulating conversations, both on this project, and several related topics.

2. PROOFS

If ` ⊂ R2 is a line, I denote by T (`, δ) the open (infinite) tube of width 2δ, with `
"running through the middle", that is, dist(`,R2 \ T (`, δ)) = δ. The notation B(x, r)
stands for a closed ball with centre x ∈ R2 and radius r > 0. The notation A . B means
that there is an absolute constant C ≥ 1 such that A ≤ CB.

Lemma 2.1. Assume that µ is a Borel probability measure on B(0, 1) ⊂ R2, and µ(`) = 0 for
all lines ` ⊂ R2. Then, for any ε > 0, there exists δ > 0 such that µ(T (`, δ)) ≤ ε for all lines
` ⊂ R2.

Proof. Assume not, so there exists ε > 0, a sequence of positive numbers δ1 > δ2 > . . . >
0, and a sequence of lines {`i}i∈N ⊂ R2 with µ(T (`i, δi)) ≥ ε. Since sptµ ⊂ B(0, 1), one
has `i ∩ B(0, 1) 6= ∅ for all i ∈ N. Consequently, there exists a subsequence (ij)j∈N, and
a line ` ⊂ R2 such that `j → ` in the Hausdorff metric. Then, for any given δ > 0, there
exists j ∈ N such that

B(0, 1) ∩ T (`ij , δij ) ⊂ T (`, δ),

so that µ(T (`, δ)) ≥ ε. It follows that µ(`) ≥ ε, a contradiction. �

The following lemma contains most of the proof of Theorem 1.5:

Lemma 2.2. Assume that µ, ν are Borel probability measures with compact supports K,E ⊂
B(0, 1), respectively. Assume that both measures µ and ν satisfy a Frostman condition with
exponents κµ, κν ∈ (0, 2], respectively:

µ(B(x, r)) ≤ Cµrκµ and ν(B(x, r)) ≤ Cνrκν (2.3)

for all balls B(x, r) ⊂ R2, and for some constants Cµ, Cν ≥ 1. Assume further that µ(`) = 0 for
all lines ` ⊂ R2. Fix also

0 < τ <
κµ
2 and ε > 0,

and write δk := 2−(1+ε)k .
Then, there exist numbers β = β(κµ, κν , τ) > 0, η = η(ε, κµ, κν , τ) > 0, and an index

k0 = k0(ε, µ, κν , τ) ∈ N with the following properties. For all k ≥ k0, there exist
(a) compact sets K ⊃ Kk0 ⊃ Kk0+1 . . . with

µ(Kk) ≥ 1−
∑

k0≤j<k
(1

4)j−k0+1 ≥ 1

2
, (2.4)
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(b) compact sets E ⊃ Ek0 ⊃ Ek0+1 . . . with ν(Ek) ≥ δβk
with the following property: if k > k0, p ∈ Ek, and T (`1, δk), . . . , T (`N , δk) is a family of tubes
of cardinality N ≤ δ−τk , each containing p, then

µ

Kk ∩
N⋃
j=1

T (`j , δk)

 ≤ δηk . (2.5)

Remark 2.6. The index k0 can be chosen as large as desired; this will be clear from the
proof below. It will also be used on many occasions, without separate remark, that δk
can be assumed very small for all k ≥ k0.

Proof. The proof is by induction, starting at the largest scale k0, which will be presently
defined. Fix η = η(ε, κµ, κν , τ) > 0 and

Γ = Γ(ε, κµ, κν , τ). ∈ N (2.7)

The number Γ will be specified at the very end of the proof, right before (2.32), and there
will be several requirements for the number η, see (2.22), (2.28), and (2.31). Applying
Lemma 2.1, first pick an index k1 = k1(ε, µ, κν , τ) ∈ N such that µ(T (`, δk1)) ≤ (1

4)Γ+1 for
all tubes T (`, δk1) ⊂ R2, and

δηk−Γ ≤ (1
4)k−Γ+1, k ≥ k1. (2.8)

Set k0 := k1 + Γ. Then, the following holds for all k ∈ {k0, . . . , k0 + Γ}. For any subset
K ′ ⊂ K, and any tube T (`, δk−Γ) ⊂ R2, one has

µ(K ′ ∩ T (`, δk−Γ)) ≤ µ(T (`, δk1)) ≤ (1
4)Γ+1 ≤ (1

4)k−k0+1. (2.9)

Define
Kk := K and Ek := E, k1 ≤ k ≤ k0.

(The definitions of Ek,Kk for k1 ≤ k < k0 are only given for notational convenience.)
I start by giving an outline of how the induction will proceed. Assume that, for a

certain k ≥ k0, the sets Kk and Ek have been constructed such that
(i) the condition (2.9) is satisfied with K ′ = Kk, and for all tubes T (`, δk−Γ) with

T (`, δk−Γ) ∩ Ek−Γ 6= ∅.
(ii) Kk and Ek satisfy the measure lower bounds (a) and (b) from the statement of the

lemma.
Under the conditions (i)-(ii), I claim that it is possible to find subsets Kk+1 ⊂ Kk and
Ek+1 ⊂ Ek, satisfying (ii) at level k + 1, and also the non-concentration condition (2.5)
at level k + 1. This is why (2.5) is only claimed to hold for k > k0, and no one is indeed
claiming that it holds for the sets Kk0 and Ek0 . These sets satisfy (i), however, which
should be viewed as a weaker substitute for (2.5) at level k, which is just strong enough
to guarantee (2.5) at level k + 1. There is one obvious question at this point: if (i) at level
k gives (2.5) at level k + 1, then where does one get (i) back at level k + 1?

If k + 1 ∈ {k0, . . . , k0 + Γ}, the condition (i) is simply guaranteed by the choice of k0

(one does not even need to assume that T (`, δk−Γ) ∩ Ek−Γ 6= ∅). For k + 1 > k0 + Γ,
this is no longer true. However, for k + 1 > Γ + k0, one has k + 1 − Γ > k0, and
thus Kk+1−Γ and Ek+1−Γ have already been constructed to satisfy (2.5). In particular, if
Ek+1−Γ ∩ T (`, δk+1−Γ) 6= ∅, then

µ(Kk+1 ∩ T (`, δk+1−Γ)) ≤ µ(Kk+1−Γ ∩ T (`, δk+1−Γ)) ≤ δηk+1−Γ ≤ (1
4)(k+1)−k0+1 (2.10)
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by (2.5) and (2.8). This means that (i) is satisfied at level k + 1, and the induction may
proceed.

So, it remains to prove that (i)–(ii) at level k imply (ii) and (2.5) at level k+ 1. To avoid
clutter, I write

δ := δk+1.

Assume that the sets Kk, Ek have been constructed for some k ≥ k0, satisfying (i)–(ii).
The main task is to understand the structure of the set of points p ∈ Ek for which (2.5)
fails, and these points are denoted by Badk. More precisely, p ∈ Badk, if and only if
p ∈ Ek, and there exist N ≤ δ−τ tubes T (`1, δ), . . . , T (`N , δ), each containing p, such that

µ

Kk ∩
N⋃
j=1

T (`j , δ)

 > δη. (2.11)

Note that if Badk = ∅, then one can simply define Ek+1 := Ek and Kk+1 := Kk, and (ii)
and (2.5) (at level k + 1) are clearly satisfied.

Instead of analysing Badk directly, it is useful to split it up into "directed" pieces, and
digest the pieces individually. To make this precise, let S be the "space of directions"; for
concreteness, I identify S with the upper half of the unit circle. Then, if T = T (`, δ) ⊂ R2

is a tube, I denote by dir(T ) the unique vector e ∈ S such that `‖e.
Recall the small parameter η > 0, and partition S into D = δ−η arcs J1, . . . , JD of

length ∼ δη.1 For d ∈ {1, . . . , D} fixed ("d" for "direction"), consider the set Baddk: it
consists of those points p ∈ Ek such that there exist N ≤ δ−τ tubes T (`1, δ), . . . , T (`N , δ),
each containing p, with dir(T (`i, δ)) ∈ Jd, and satisfying

µ

Kk ∩
N⋃
j=1

T (`j , δ)

 > δ2η.

Since the direction of every possible tube in R2 belongs to one of the arcs Ji, and there
are only D = δ−η arcs in total, one has

Badk ⊂
D⋃
d=1

Baddk. (2.12)

The next task is to understand the structure of Baddk for a fixed direction d ∈ {1, . . . , D}.
I claim that Baddk looks like a garden of flowers, with all the petals pointing in direction
Jd, see Figure 2 for a rough idea. To make the statement more precise, I introduce an addi-
tional piece of notation. FoxX ⊂ Kk, letBd(X) consist of those points p ∈ Ek such thatX
can be covered by N ≤ δ−τ tubes T (`1, δ), . . . , T (`N , δ), with directions dir(T (`i, δ)) ∈ Jd,
and each containing p. Then, note that

Baddk = {p ∈ Ek : ∃X ⊂ Kk with µ(X) > δ2η and p ∈ Bd(X)}. (2.13)

The sets Bd(X) also has the trivial but useful property that

X ⊂ X ′ ⊂ Kk =⇒ Bd(X
′) ⊂ Bd(X).

1Here, it might be better style to pick another letter, say α > 0, in place of η, since the two parameters
play slightly different roles in the proof. Eventually, however, one would end up considering min{η, α},
and it seems a bit cleaner to let η > 0 be a "jack of all trades" from the start.
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FIGURE 2. The set Baddk.

There are two steps in establishing the "garden" structure of Baddk: first, one needs to
find the "flowers", and second, one needs to check that the sets obtained actually look
like flowers in a non-trivial sense. I start with the former task. Assuming that Baddk 6= ∅,
pick any point p1 ∈ Baddk, and an associated subset X1 ⊂ Kk with

µ(X1) > δ2η and p1 ∈ Bd(X1).

Then, assume that p1, . . . , pm ∈ Baddk and X1, . . . , Xm have already been chosen with the
properties above, and further satisfying

µ(Xi ∩Xj) ≤ δ4η/2, 1 ≤ i < j ≤ m. (2.14)

Then, see if there still exists a subset Xm+1 ⊂ Kk with the following three properties:
µ(Xm+1) > δ2η, Bd(Xm+1) 6= ∅, and µ(Xm+1 ∩Xi) ≤ δ4η/2 for all 1 ≤ i ≤ m. If such a set
no longer exists, stop; if it does, pick pm+1 ∈ Bd(Xm+1), and add Xm+1 to the list.

It follows from the "competing" conditions µ(Xi) > δ2η, and (2.14), that the algorithm
needs to terminate in at most

M ≤ 2δ−4η (2.15)
Indeed, assume that the sets X1, . . . , XM have already been constructed, and consider
the following chain of inequalities:

1

M
+

1

M(M − 1)

∑
i1 6=i2

µ(Xi1 ∩Xi2) ≥ 1

M2

M∑
i1,i2=1

µ(Xi1 ∩Xi2)

=
1

M2

∫ M∑
i1,i2=1

1Xi1∩Xi2 (x) dµ(x)

=
1

M2

∫
[card{1 ≤ i ≤M : x ∈ Xi}]2 dµ(x)

≥ 1

M2

(∫
card{1 ≤ i ≤M : x ∈ Xi} dµ(x)

)2

=
1

M2

(
M∑
i=1

µ(Xi)

)2

> δ4η.
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Thus, ifM > 2δ−4η, there exists a pairXi1 , Xi2 with i1 6= i2 such that µ(Xi1∩Xi2) > δ4η/2,
and the algorithm has already terminated earlier. This proves (2.15).

With the sets X1, . . . , XM now defined, write

B′d(Xj) := {p ∈ Ek : ∃X ′ ⊂ Xj with µ(X ′) > δ4η/2 and p ∈ Bd(X ′)}.

I claim that

Baddk ⊂
M⋃
j=1

B′d(Xj). (2.16)

Indeed, if p ∈ Baddk, then p ∈ Bd(X) for some X ⊂ Kk with µ(X) > δ2η by (2.13). It
follows that

µ(X ∩Xj) > δ4η/2 (2.17)

for one of the sets Xj , 1 ≤ j ≤ M , because either X ∈ {X1, . . . , XM}, and (2.17) is
clear (all the sets Xj even satisfy µ(Xj) > δ2η), or else (2.17) must hold by virtue of X
not having been added to the list X1, . . . , XM in the algorithm. But (2.17) implies that
p ∈ B′d(Xj), since X ′ = X ∩Xj ⊂ Xj satisfies µ(X ′) > δ4η/2 and p ∈ Bd(X) ⊂ Bd(X ′).

According to (2.15) and (2.16) the set Baddk can be covered by M ≤ 2δ−4η sets of the
form B′d(Xj), see Figure 2. These sets are the "flowers", and their structure is explored in
the next lemma:

Lemma 2.18. The following holds, if δ = δk+1 is small enough. For 1 ≤ d ≤ D and 1 ≤ j ≤M
fixed, the set B′d(Xj) can be covered by ≤ 4δ−8η tubes of the form T = T (`, δρ), where dir(T ) ∈
Jd, and ρ = ρ(κµ, τ) > 0. The tubes can be chosen to contain the point pj ∈ Bd(Xj).

Proof. Fix 1 ≤ j ≤ M and p ∈ B′d(Xj). Recall the point pj ∈ Bd(Xj) from the def-
inition of Xj . By definition of p ∈ B′d(Xj), there exists a set X ′ ⊂ Xj with µ(X ′) >
δ4η/2 and p ∈ Bd(X

′). Unwrapping the definitions further, there exist N ≤ δ−τ tubes
T (`1, δ), . . . , T (`N , δ), the union of which covers X ′, and each satisfies dir(T (`i, δ)) ∈ Jd
and p ∈ T (`i, δ). In particular, one of these tubes, say Tp = T (`i, δ), has

µ(Xj ∩ Tp) ≥ µ(X ′ ∩ Tp) ≥ µ(X ′) · δτ ≥ δ4η+τ/2 ≥ δ8η+τ/4. (2.19)

(The final inequality is for just a triviality at this point, but is useful for later technical
purposes later.) Here comes perhaps the most basic geometric observation in the proof: if
the measure lower bound (2.19) holds for some δ-tube T – this time Tp – and a sufficiently
small η > 0 (crucially so small that 8η + τ < κ/2), then the whole set Bd(Xj) is actually
contained in a neighbourhood of T , called T ∗, because Xj ∩ T is so difficult to cover by
δ-tubes centred at points outside T ∗, see Figure 3. In particular, in the present case,

pj ∈ Bd(Xj) ⊂ T (`i, δ
4ρ) =: T ∗p (2.20)

for a suitable constant ρ = ρ(κµ, τ) > 0, specified in (2.22). To see this formally, pick
q ∈ B(0, 1) \ T ∗p , and argue as follows to show that q /∈ Bd(Xj). First, any δ-tube T
containing q, and intersecting Tp ∩ B(0, 1), makes an angle of at least & δ4ρ with Tp. It
follows that

diam(T ∩ Tp ∩B(0, 1)) . δ1−4ρ,
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q Tp

Tp*

FIGURE 3. Covering Xj ∩ Tp by tubes centred at points outside T ∗p .

and consequently µ(T ∩ Tp ∩ B(0, 1)) . Cµδ
κµ(1−4ρ). So, in order to cover Xj ∩ Tp (let

alone the whole set Xj) it takes by (2.19) at least

&
µ(Xj ∩ Tp)
Cµδκµ(1−4ρ)

≥ δ8η+τ−κµ(1−4ρ)

Cµ
≥ δ8η−κµ/2+8ρ

Cµ
(2.21)

tubes T containing q. But if

0 < 8η <
κµ
2 − τ

2
and 8ρ =

κµ
2 − τ

2
, (2.22)

then the number on the right hand side of (2.21) is far larger than δ−τ , which means that
q /∈ Bd(Xj), and proves (2.20).

Recall the statement of the Lemma 2.18, and compare it with the previous accomplish-
ment: (2.20) states that whenever p ∈ B′d(Xj), then p lies in a certain tube of width δ4ρ

(namely Tp), which has direction in Jd, and also contains pj . This sounds a bit like the
statement of the lemma, but there is a problem: in principle, every point p ∈ B′(Xj)
could give rise to a different tube Tp. So, it essentially remains to show that all these
δ4ρ-tubes Tp can be covered by a small number of tubes of width δρ. To begin with, note
that the ball Bj := B(pj , δ

2ρ) can be covered by a single tube of width δρ, in any direction
desired. So, to prove the lemma, it remains to cover B′d(Xj) \Bj .

Note that if p, q satisfy |p− q| ≥ δ2ρ, then the direction of any δ4ρ-tube containing both
p, q lies in a fixed arc J(p, q) ⊂ S of length |J(p, q)| . δ4ρ/δ2ρ = δ2ρ. As a corollary, the
union of all δ4ρ-tubes containing p, q, intersected with B(0, 1), is contained in a single
tube of width ∼ δ2ρ. In particular, this union (still intersected with B(0, 1)) is contained
in a single δρ-tube, assuming that δ > 0 is small; this tube can be chosen to be a δρ-tube
around an arbitrary δ4ρ-tube containing both p and q.

The tube-cover of B′d(Xj) \ Bj can now be constructed by adding one tube at a time.
First, assume that there is a point q1 ∈ B′d(Xj) \Bj , and find a tube T (`1, δ

4ρ) containing
both q and pj , with direction in Jd; existence follows from (2.20). Add the tube T (`1, δ

ρ)
to the the tube-cover ofB′d(Xj)\Bj , and recall from the previous paragraph that T (`1, δ

ρ)
now contains T ∩B(0, 1) for any δ4ρ-tube T ⊃ {q1, pj} (of which T = T (`1, δ

4ρ) is just one
example). Finally, by definition of q1 ∈ B′d(Xj), associate to q1 a subset X ′1 ⊂ Xj with

µ(X ′1) > δ4η/2 and q1 ∈ Bd(X ′1). (2.23)
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Assume that the points q1, . . . , qH ∈ B′d(Xj) \ Bj , along with the associated tubes
{qi, pj} ⊂ T (`i, δ

4ρ) ⊂ T (`i, δ
ρ), and subsets X ′i ⊂ Xj , as in (2.23), have already been

constructed. Assume inductively that

µ(X ′i1 ∩X
′
i2) ≤ δ8η/4, 1 ≤ i1 < i2 ≤ H. (2.24)

To proceed, pick any point qH+1 ∈ B′d(Xj)\Bj , and associate to qH+1 a subsetX ′H+1 ⊂ Xj

with µ(X ′H+1) > δ4ρ/2 and qH+1 ∈ Bd(X ′H+1). Then, test whether (2.24) still holds, that
is, whether µ(X ′H+1 ∩ X ′i) ≤ δ8η

k+1/4 for all 1 ≤ i ≤ H . If such a point qH+1 can be
chosen, run the argument from the previous paragraph, first locating a tube T (`H+1, δ

4ρ)
containing both qH+1 and pj , with direction in Jd, and finally adding T (`H+1, δ

ρ) to the
tube-cover under construction.

The "competing" conditions µ(X ′i) > δ4η/2, and (2.24), guarantee that the the algo-
rithm terminates in

H ≤ 4δ−8η

steps. The argument is precisely the same as used to prove (2.15), so I omit it. Once the
algorithm has terminated, I claim that all points of B′d(Xj) \Bj are covered by the tubes
T (`i, δ

ρ), with 1 ≤ i ≤ H . To see this, pick q ∈ B′d(Xj) \ Bj , and a subset X ′ ⊂ Xj with
µ(X ′) > δ4η/2, and q ∈ Bd(X ′). Since the algorithm had already terminated, it must be
the case that

µ(X ′ ∩X ′i) > δ8η/4

for some index 1 ≤ i ≤ H . Since X ′′ := X ′ ∩X ′i ⊂ X ′ and consequently q ∈ Bd(X ′′), one
can find a tube Tq = T (`q, δ) 3 q with dir(Tq) ∈ Jd, and satisfying

µ(X ′i ∩ Tq) ≥ µ(X ′′ ∩ Tq) ≥ µ(X ′′) · δτ > δ8η+τ/4.

This lower bound is precisely the same as in (2.19). Hence, it follows from the same
argument, which gave (2.20), that

qi ∈ Bd(X ′i) ⊂ T (`q, δ
4ρ).

Since X ′i ⊂ Xj , also pj ∈ Bd(Xj) ⊂ Bd(X ′i) ⊂ T (`q, δ
4ρ). So,

{q, qi, pj} ⊂ B(0, 1) ∩ T (`q, δ
4ρ). (2.25)

In particular, T (`q, δ
4ρ) is a δ4ρ-tube containing both qi, pj , and hence

B(0, 1) ∩ T (`q, δ
4ρ) ⊂ T (`i, δ

ρ).

Combined with (2.25), this yields q ∈ T (`i, δ
ρ), as claimed. This concludes the proof of

Lemma 2.18. �

Combining (2.15)-(2.16) with Lemma 2.18, the structural description of Baddk is now
complete: Badkd is covered by

≤M · 4δ−8η ≤ 8δ−12η (2.26)

tubes of width δρ, with directions in Jd. For non-adjacent d1, d2 ∈ {1, . . . , D} (the order-
ing of indices corresponds to the ordering of the arcs Jd ⊂ S), the covering tubes are then
fairly transversal. This is can be used to infer that most point in Ek do not lie in many
different sets Baddk. Indeed, consider the set BadBadk of those points in R2, which lie in
(at least) two sets Badd1k and Badd2k with |d2 − d1| > 1. By Lemma 2.18, such points lie in
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the intersection of some pair of tubes T1 = T (`1, δ
ρ) and T2 = T (`2, δ

ρ) with dir(Ti) ∈ Jdi .
The angle between these tubes is & δη, whence

diam(T1 ∩ T2) . δρ−η,

and consequently
ν(T1 ∩ T2) . Cνδ

κν(ρ−η) ≤ Cνδκνρ−2η. (2.27)
For d ∈ {1, . . . , D} fixed, there correspond . δ−12η tubes in total, as pointed out in (2.26).
So, the number of pairs T1, T2, as above, is bounded by

. D2 · δ−24η ≤ δ−26η.

Consequently, by (2.27),
ν(BadBadk) . Cνδ−28η+κνρ.

This upper bound is far smaller than ν(Ek)/2 ≥ δβk /2, assuming that

0 < β < κνρ− 28η. (2.28)

Given that 28η < κνρ/2, one is free to make such an assumption on β (it holds for k = k0,
since ν(Ek0) = 1), but the smaller β is, the more difficult it becomes be to ensure that
ν(Ek+1) ≥ δβk+1. To see that this can be done, start by writing Gk := Ek \ BadBadk, so
that

ν(Gk) ≥ ν(Ek)/2 ≥ δβk /2
by the choice of β. Now, either

ν (Gk ∩ Badk) ≥
ν(Gk)

2
or ν (Gk ∩ Badk) <

ν(Gk)

2
. (2.29)

The latter case is quick and easy: setEk+1 := Gk\Badk andKk+1 := Kk. Then ν(Ek+1) ≥
ν(Ek)/4 ≥ δβk+1 (assuming that k ≥ k0 is large enough). Moreover, the set Ek+1 no longer
contains any points in Badk, so (2.5) is satisfied at level k + 1, by the very definition of
Badk, see (2.11).

So, it remains to treat the first case in (2.29). Start by recalling from (2.12) that Badk is
covered by the sets Baddk, 1 ≤ d ≤ D, so

ν(Gk ∩ Baddk) ≥
ν(Gk)

2D
≥
δηδβk

4
=
δη+β/(1+ε)

4

for some fixed d ∈ {1, . . . , D}. Then, recall from (2.26) that Baddk can be covered by
≤ 8δ−12η tubes of the form T (`, δρ), with directions in Jd. It follows that there exists a
fixed tube T0 = T (`0, δ

ρ) such that

dir(T0) ∈ Jd and ν(Gk ∩ T0 ∩ Baddk) ≥
δ13η+β/(1+ε)

32
. (2.30)

So, to ensure ν(Gk ∩ T0 ∩ Baddk) ≥ δβ , choose η > 0 so small that

13η + β/(1 + ε) < β. (2.31)

To convince the reader that there is no circular reasoning at play, I gather here all the
requirements for β and η (harvested from (2.22), (2.28), and (2.31)):

0 < β <
κνρ

2
and 0 < η < min

{
κµ/2− τ

2
,
κνρ

56
,
εβ

1 + ε

}
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With such choices of β, η, recalling (2.30), and assuming that δ is small enough, the set

Ek+1 := Gk ∩ T0 ∩ Baddk.

satisfies ν(Ek+1) ≥ δβ , which is statement (b) from the lemma. It remains to define Kk+1.
To this end, recall that T0 is a tube around the line `0 ⊂ R2. Define

Kk+1 := Kk \ T (`0, δ
η/2).

Then, assuming that η/2 has the form η/2 = (1+ε)−Γ−1 for an integer Γ = Γ(ε, κµ, κν , τ) ∈
N (this is finally the integer from (2.7)), one has

δη/2 = δk−Γ. (2.32)

Since T (`0, δk−Γ) ∩ Ek−Γ 6= ∅, it follows from the induction hypothesis (i) that

µ(Kk ∩ T (`, δk−Γ)) ≤ (1
4)k−k0+1.

Consequently,

µ(Kk+1) ≥ µ(Kk)− (1
4)k−k0+1 ≥ 1−

∑
k0≤j<k+1

(1
4)j−k0+1,

which is the desired lower bound from (a) of the statement of the lemma. So, it remains
to verify the non-concentration condition (2.5) for Ek+1 and Kk+1. To this end, pick
p ∈ Ek+1. First, observe that every tube T = T (`, δ), which contains p and has non-
empty intersection with Kk+1 ⊂ B(0, 1) \ T (`, δη/2), forms an angle & δη/2 with T0. In
particular, this angle is far larger than δη. Since dir(T0) ∈ Jd by (2.30), this implies that
dir(T ) ∈ Jd′ for some |d′ − d| > 1.

Now, if the non-concentration condition (2.5) still failed for p ∈ Ek+1, there would
exist N ≤ δ−τ tubes T (`1, δ), . . . , T (`N , δ), each containing p, and with

µ

(
Kk+1 ∩

N⋃
i=1

T (`i, δ)

)
> δη.

By the pigeonhole principle, it follows that the tubes T (`i, δ) with dir(Ti) ∈ Jd′ , for some
fixed arc Jd′ , cover a set X ⊂ Kk+1 ⊂ Kk of measure µ(X) > δ2η. This means precisely
that p ∈ Badd

′

k , and by the observation in the previous paragraph, |d − d′| > 1. But
p ∈ Ek+1 ⊂ Baddk by definition, so this would imply that p ∈ BadBadk, contradicting the
fact that p ∈ Ek+1 ⊂ Gk. This completes the proof of (2.5), and the lemma. �

The proof of Theorem 1.5 is now quite standard:

Proof of Theorem 1.5. Write s := dimHK, and assume that s > 0 and dimHE > 0. Make
a counter assumption: E is not contained on a line, but dimH πp(K) < s/2 for all p ∈ E.
Then, find t < s/2, and a positive-dimensional subset Ẽ ⊂ E, not contained on any
single line, with dimH πp(K) ≤ t for all p ∈ Ẽ (if your first attempt at Ẽ lies on some
line `, simply add a point p0 ∈ E \ ` to Ẽ, and replace t by max{t,dimH πp0(K)} < s/2).
So, now Ẽ satisfies the same hypotheses as E, but with "< s/2" replaced by "≤ t < s/2".
Thus, without loss of generality, one may assume that

dimH πp(K) ≤ t < s/2, p ∈ E. (2.33)
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Using Frostman’s lemma, pick probability measures µ, ν with sptµ ⊂ K and spt ν ⊂
E, and satisfying the growth bounds (2.3) with exponents 0 < κµ < s and κν > 0. Pick,
moreover, κµ so close to s that

κµ/2 > t. (2.34)

Observe that µ(`) = 0 for all lines ` ⊂ R2. Indeed, if µ(`) > 0 for some line ` ⊂ R2, then
there exists p ∈ E \ ` by assumption, and

dimH πp(K) ≥ dimH πp(sptµ ∩ `) ≥ κµ > t,

violating (2.33) at once. Finally, by restricting the measures µ and ν slightly, one may
assume that they have disjoint supports.

In preparation for using Lemma 2.2, fix ε > 0, 0 < τ < κµ/2 in such a way that
τ

(1 + ε)2
> t. (2.35)

This is possible by (2.34). Then, apply Lemma 2.2 to find the parameters β, η > 0, k0 ∈ N,
and the sets sptµ ⊃ Kk0 ⊃ Kk0+1 ⊃ . . . and spt ν ⊃ Ek0 ⊃ Ek0+1 ⊃ . . .. Write

K ′ :=
⋂
k≥k0

Kk ⊂ sptµ and E′ :=
⋂
k≥k0

Ek ⊂ spt ν.

Both sets are non-empty and compact (being intersections of nested sequences of non-
empty compact sets), µ(K ′) ≥ 1

2 , and K ′ ∩ E′ = ∅. Pick p ∈ E′. I claim that

dimH πp(K
′) ≥ τ

(1 + ε)2
, (2.36)

which violates (2.33) by (2.35). If not, cover πp(K) by efficiently by arcs J1, J2, . . . of
lengths restricted to the values δk = 2−(1+ε)k , with k ≥ k0. More precisely: assuming that
(2.36) fails, start with an arbitrary efficient cover J̃1, J̃2, . . . by arcs of length |J̃i| ≤ δk0 ,
satisfying ∑

j≥1

|J̃j |τ/(1+ε)2 ≤ 1.

Then, replace each J̃j by the shortest concentric arc Jj ⊃ J̃j , whose length is of the form
δk. Note that `(Jj) ≤ `(J̃j)1/(1+ε), so that∑

j≥1

|Jj |τ/(1+ε) ≤
∑
j≥1

|J̃j |τ/(1+ε)2 ≤ 1.

The arcs J1, J2, . . . now cover πp(K ′), and there are≤ δ−τ/(1+ε)
k arcs of any fixed length δk.

Since p /∈ K ′, for every k ≥ k0 there exists a collection of tubes Tk of the form T (`, δk) 3 p,
such that |Tk| . δ

−τ/(1+ε)
k (the implicit constant depends on dist(p,K ′)), and

K ′ ⊂
⋃
k≥k0

⋃
T∈Tk

T.

In particular |Tk| ≤ δ−τk , assuming that δk is small enough for all k ≥ k0. Recall that
µ(K ′) ≥ 1

2 . Hence, by the pigeonhole principle, one can find k ∈ N such that the fol-
lowing holds: there is a subset K ′k ⊂ K ′ with µ(K ′k) ≥

1
100k2

such that K ′k is covered
by the tubes in Tk. But 1/(100k2) is far larger than δηk , so this is explicitly ruled out by
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non-concentration estimate in Lemma 2.2, namely (2.5). This contradiction completes the
proof. �

REFERENCES

[1] M. BOND, I. ŁABA, AND J. ZAHL: Quantitative visibility estimates for unrectifiable sets in the plane, Trans.
Amer. Math. Soc. 368(8) (2016), 5475-5513

[2] J. BOURGAIN: On the Erdős-Volkmann and Katz-Tao ring conjectures, Geom. Funct. Anal. 13(2) (2003),
334-365

[3] M. CSÖRNYEI: On the visibility of invisible sets, Ann. Acad. Sci. Fenn. Math. 25(2) (2000), 417-421
[4] M. CSÖRNYEI: How to mame Davies’ theorem visible, Bull. London Math. Soc. 33(1) (2001), 59-66
[5] N. H. KATZ AND T. TAO: Some connections between Falconer’s distance set conjecture and sets of Fursten-

burg type, New York J. Math. 7 (2001), 149-187
[6] J. M. MARSTRAND: Some fundamental geometrical properties of plane sets of fractional dimensions, Proc.

London Math. Soc. 4 (3) (1954), 257-302
[7] P. MATTILA: Integral geometric properties of capacities, Trans. Amer. Math. Soc. 226(2) (1981), 539-554
[8] P. MATTILA: Hausdorff dimension, projections, and the Fourier transform, Publ. Mat. 48(1) (2004), 3-48
[9] P. MATTILA AND T. ORPONEN: Hausdorff dimension, intersections of projections and exceptional plane

sections, Proc. Amer. Math. Soc. 144(8) (2016), 3419-3430
[10] T. ORPONEN: A sharp exceptional set estimate for visibility, Bull. London Math. Soc. (to appear),

arXiv:1602.07629
[11] T. ORPONEN AND T. SAHLSTEN: Radial projections of rectifiable sets, Ann. Acad. Sci. Fenn. Math. 36(2)

(2011), 677-681
[12] Y. PERES AND W. SCHLAG: Smoothness of projections, Bernoulli convolutions, and the dimension of excep-

tions, Duke Math. J. 102(2) (2000), 193-251
[13] K. SIMON AND B. SOLOMYAK: Visibility for self-similar sets of dimension one in the plane, Real Anal.

Exchange 32(1) (2006/2007), 67-78

UNIVERSITY OF HELSINKI, DEPARTMENT OF MATHEMATICS AND STATISTICS
E-mail address: tuomas.orponen@helsinki.fi


	1. Introduction
	1.1. Acknowledgements

	2. Proofs
	References

