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Abstract. It is known that in Rn, n ≥ 2, a compact set which contains n − 1 spheres

with all radii in [1/2, 1] or with all possible centres in [0, 1]n has full Hausdorff dimension.

In fact the later set has positive Lebesgue measure. In this paper we consider a similar
problem with sphere replacing by fractal cubes. The radii set and the centre set are also

considered to be fractal sets. In addition we discuss the exceptional set in the setting

of general largeness. In the end, an Furstenberg type exmaple is discussed which can
be somehow considered as the Furstenberg ×2, ×3 set conjecture (now theorem) in the

setting of cubes/circles sets considered here.

1. Introduction and results of this paper

It is known by Kolasa and Wolff [WK99] and Wolff [Wol97] that for any n ≥ 2, any com-
pact subset of Rn which contains sphere of all radii in [1/2, 1] has full Hausdorff dimension.
Recently, Keleti, Nagy, Shmerkin [KNS14], Thornton [Tho17] and Chang, Csörnyei, Héra,
Keleti [CCHK17] considered a similar problem also introduced in [Wol97] (originally consid-
ered by Bourgain [Bou86] and Marstrand [Mar87]) but with spheres replaced by cubes. In
particular in R2 they showed that a set which contains cubes with all centres in [0, 1]× [0, 1]
has Hausdorff dimension at least 1 and lower box dimension at least 7/4. Their result
is sharp. The crucial difference between circles and squares is the curvature, in fact the
curvature property was heavily exploited by Kolasa and Wolff [WK99] and Wolff [Wol97].

Inspired by [KNS14], we consider sets in Rn which contain cubes of all side length in
[1/2, 1]. Formally we have the following definition:

Definition 1.1. Let G be a compact subset of Rn. Then we require that for any r ∈ [1/2, 1],
there exists a cube of side length r contained in G.

Here we fix an orthogonal coordinate system and our cubes are aligned cubes with respect
with the coordinate lines.

We shall call such set G a cube-Wolff set.

The situation appeared in [KNS14] can be put in the following definition:

Definition 1.2. Let G be a compact subset of Rn. Then we require that for any x ∈ [0, 1]n,
there exists a cube centred at x contained in G.

Here we fix an orthogonal coordinate system and our cubes are aligned cubes with respect
with the coordinate lines.

We shall call such set G a cube-Wolffff set( with four ’f ’ indicating the difference ).

For dimension results of cube-Wolff sets we have the following theorem.

Theorem 1.3. For any n ≥ 1, let G ⊂ Rn be a cube-Wolff set, then:

dimAG ≥ dimBG ≥ n− 1/2.
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dimHG ≥ n− 1.

We shall construct cube-Wolff sets with Hausdorff dimension n− 1, lower box dimension
n − 1/2 and Assouad dimension arbitrarily close to n − 1/2 (not simultaneously). In this
sense, our results above are sharp.

Despite the above results and those in [KNS14] which shows that cube-Wolff(ff) sets may
not be as large as we expect even if we consider the Assouad dimension. However, we propose
here another sense of largeness which can be described as ’large in general’. The idea is that
we can mildly ’change’ any cube-Wolff(ff) sets a little bit to achieve large dimension. Here
’mildly’ is crucial, for example take any ε > 0 if we allow each cube to either translate within
distance ε or rescale with ratio within (1− ε, 1 + ε) then we can achieve generically a large
set (full upper box dimension). The point here is that do not allow too many freedoms of
manipulating the set.

Towards this direction we consider the original motivation of circle maximal problems.
Given a wave equation, the solution can be presented as ’wave-fronts’, if the source set
is given, then how large is the ’wave-front’ set in relation with time? Then we can con-
sider similar problem with ’cube-front’ and precise formulation is included in the following
theorems.

Theorem 1.4. Let G be a cube-Wolff set in Rn, n ≥ 1. In particular, for all r ∈ [1/2, 1]
there exists a cube C(r) of side length r contained in G. If such choice is not unique, we
choose any one of them. For a number t ∈ [0, 1]. Denote Ct(r) be the cube co-centred with
C(r) but the side length is scaled to tr. Denote Gt =

⋃
r∈[1/2,1] Ct(r). Then denote the

following set:

V (σ) = {t ∈ [0, 1] : dimBGt ≤ n− σ}.
Then dimH V (σ) ≤ 1− σ.

Theorem 1.5. Let G be a cube-Wolffff set in Rn, n ≥ 1. In particular, for all x ∈ [0, 1]n

there exists a cube C(x) centred at x contained in G. If such choice is not unique, we choose
any one of them. For a number t ∈ [0, 1]. Denote Ct(x) be the cube co-centred with C(x)
but the side length is scaled by multiplying t. Denote Gt =

⋃
x∈[0,1]n Ct(x). Then denote the

following set:

V (σ) = {t ∈ [0, 1] : dimBGt ≤ n− σ}.
Then dimH V (σ) ≤ 1− σ.

For lower box dimension we have the following result.

Theorem 1.6. Let G be a cube-Wolff(ff) set in Rn, n ≥ 1. Let σ > 0

V (σ) = {t ∈ [0, 1] : dimBGt ≤ n− σ}.

Then dimH V (σ) < 1.

We can compare the above results as some sort of Marstrand projection theorem although
the situation here is closer to slicing.

One possible further problem is to replace the full cube by some fractal sets and study
the dimension results and largeness in general. In order to study those problems we need
to define some special sets in Euclidean spaces which were included in [HKM17] as special
cases.

1. Fractal Kakeya book:
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Let n ≥ 2 be an integer. Consider Sn−1 ⊂ Rn to be identified with the set of directions
in Rn. Let C ⊂ Sn−1 be any compact smooth curve. For any t ∈ C, we consider the
hyperplane passing through the origin and orthogonal with t:

H(t) = {x ∈ Rn :< x, t >= 0}.

Here < ., . > denotes the Euclidean inner product in Rn. For any a ∈ Rn we denote H(t, a)
to be the affine hyperplane passing through a and parallel with H(t).

Definition 1.7. For a smooth simple curve C ⊂ Sn−1 ⊂ Rn and a real number β ∈ [0, n−1].
We say a Borel subset K ⊂ Rn to be a C, β Kakeya book if there exists a constant c > 0
such that:

inf
t∈C

sup
a∈Rn

Hβ(K ∩H(t, a)) ≥ c.

Sometimes the dependence of curve C is not important and we simply call a set β Kakeya
book if it is a C, β Kakeya book for a smooth simple curve C.

2. Fractal grass set

Definition 1.8. Let n ≥ 2 be an integer, consider a smooth submanifold C ⊂ Rn and a real
number β ∈ [0, 1]. A bounded Borel set G ⊂ Rn is called a C, β-grass set (or β-grass set on
C ) if there exists a constant c1 such that:

∀x ∈ C

G intersects a unit line segment lx centered at x with β-Hausdorff measure greater than c1.
Further we require the following transverse condition with a positive constant 0 < c2 < 1,

denote the direction of lx as tx:

sup
γ∈TxC

< tx, γ >

|γ|
≤ c2.

Here TxC is the tangent space of C at x and < ., . > denotes the Euclidean inner product.

We state the following two conjectures. The optimistic guess is probably not true but
this gives us an best possible result to achieve, maybe with some additional conditions. One
of those possibilities is considered in this paper.

Conjecture 1.9 (Fractal Kakeya book). Let K ⊂ Rn, n ≥ 3 be a β Kakeya book, if β ∈
(n− 2, n− 1) then:

dimHK ≥ β + 1. Optimistic guess

dimHK ≥ n− 2 +
3

2
(β − (n− 1)) +

1

2
. Rational guess

Remark 1.10. It is known that the conclusion dimHK ≥ β + 1 is not true for n = 2 in its
full generality by [Wol99].

Conjecture 1.11 (Fractal grass). Let β ∈ [0, 1], G ⊂ R2 be a [0, 1]× {0}, β-grass set then:

dimHG ≥ β + 1. Optimistic guess

dimHG ≥
3

2
β +

1

2
. Rational guess
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Remark 1.12. Later we shall show that for β = 1 the conjecture holds in R2 and in R3

with β = 1, we can probably use Wolff’s hairbrush method to show a lower bound 2.5 for the
three dimensional version of grass sets.

The relation between the above conjectures and cube-Wolff(ff) can be stated in the fol-
lowing meta-theorems:

Theorem 1.13 (Meta-theorem, optimistic largeness in general). We have the following
statements for any σ > 0:

1. Rational conjectures 1.9,1.11 =⇒ V (σ) appeared in theorem 1.3,1.4 has Hausdorff
dimension ≤ 1− 2σ.

2. Optimistic conjecture 1.9,1.11 =⇒ V (σ) appeared in theorem 1.3,1.4 has 0 Hausdorff
dimension.

Remark 1.14. The reason that for cube-Wolff sets 1− 2σ is a reasonable upper bound for
dimH V (σ) is because dimBG ≥ n − 1/2 for any cube-Wolff set in Rn. While this is not
the case for cube-Wolffff sets, however, from the proof we shall see that our argument for
largeness in general holds for cube-Wolffff sets with all cubes replaced by its vertices.

Now we come back to cube problems. In R2, if instead of the full square we only have
a β-set imbedded in each square in the definition of cube-Wolff(ff) sets, then what are the
dimention results?

Further for cube-Wolff sets instead of all radius in [1/2, 1] we only require all radius in a
α-set contained in [1/2, 1]. For cube-Wolffff sets instead of requiring the whole [0, 1]2 to be
the center set, we can also consider cubes centred within an α-set contained in [0, 1]2. Here
β, α are suitable real numbers.

Then we will refer those sets as (α, β)-cube-Wolff(ff) sets. It is also natural to consider
(α, β)-circle-Wolff(ff) sets which can be similarly defined. We refer [Sch97] for a comprehen-
sive discussion of circle maximal operator.

An upper bound of any dimension of (α, β)-cube(circle)-Wolff(ff) sets would be just
min{α + β, 2} and follows the idea of the classical Marstrand projection we would expect
the value min{α+ β, 2} is attained in general in a similar way as in theorem 1.3, 1.4.

Theorem 1.15. For α ∈ (0, 1], β ∈ (0, 1]. Let G be a (α, β)-cube-Wolff(ff) set in R2.
Denote

V (σ) = {t ∈ [0, 1] : dimBGt ≤ α+ β − σ}.
Then ∀σ > 0,dimH V (σ) < 1. This implies that for Lebesgue almost every t ∈ [0, 1],
dimBGt = α+ β.

Furthermore denote:

W (σ) = {t ∈ [0, 1] : dimBGt ≤ α+ β − σ}.
Then ∀σ > 0,dimHW (σ) < α. This implies that apart from a set of Hausdorff dimension
small or equal to α, Gt has upper box dimension α+ β.

Remark 1.16. The above result holds for (α, β)-circle-Wolff(ff) sets as well. Since circles
have non vanishing curvature, in this case we have a bit better bound of the exception set.
For example the exceptional set for upper box dimension is no greater than 0.5α. From
existing result on circle maximal operators for example in [Wol97] we can in fact show that
(α, β)-circle-Wolff(ff) sets has Hausdorff dimension at least 3β + α− 2 = α+ β + 2(β − 1).
We will not discuss circle-Wolff(ff) sets in much detail. The central difference is that two
’cones’ intersect on a parabola which also has non vanishing curvature.
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2. Notations and preliminaries

Here we list some notions of dimensions we shall use in this paper. All the notions of
dimensions here are quite standard ( except for the sliced box dimension ), for Hausdorff
dimension and box dimensions we refer [Mat99, chapter 4,5], [Fal04, chapter 2,3] for more
details.

Here we shall use Nr(F ) for the minimal covering number of a set F in Rn with balls
(sometimes with cubes but the dimension result will not differ) of radius r > 0.

Here we shall discuss the definitions of the dimensions of a set F ⊂ Rn.
Hausdorff dimension: For any s ∈ R+, for any δ > 0 define the following quantity:

Hsδ(F ) = inf

{ ∞∑
i=1

(diamUi)
s :
⋃
i

Ui ⊃ F,Ui < δ

}
.

Then the s-Hausdorff measure of F is:

Hs(F ) = lim
δ→0
Hsδ(F ).

The Hausdorff dimension of F is:

dimH F = inf{s ≥ 0 : Hs(F ) = 0} = sup{s ≥ 0 : Hs(F ) =∞}.
For s ∈ R+ An s-set in Rn is a Borel subset of Rn with positive and finite s-Hausdorff

measure.
Box dimensions: The upper/lower box dimension of F is:

dimB/dimB(F ) = lim sup
r→0

/ lim inf
r→0

(
− logNr(F )

log r

)
.

If the limsup and liminf are equal we call this value the box dimension of F .
Through out this paper, we shall discuss cubes or squares. To be precise when we have

an Euclidean space Rn, we fix a Cartesian coordinate system. A cube centred at x ∈ Rn
with side length r is the following ’layer’ set of the supreme norm in Euclidean space:

{y ∈ Rn : ‖y − x‖∞ = r/2}.
So we see that such a cube is aligned with the coordinate axis.

Sliced box dimensions: In this paper the notion of sliced box dimension is introduced
in order to study the largeness in general property of cube-Wolff(ff) sets. We will return to
this topic in a later chapter.

Let n ≥ 2 be an integer. We consider A ⊂ Rn. Let t ∈ Sn−1 be a directional vector, we
shall consider slices of A with hyperplanes orthogonal with t.

Without loss of generality, we assume t = (1, 0, 0, . . . , 0). For any y ∈ R, we consider the
stripe of width ε > 0:

S(y, ε) =
{
X ∈ Rn : |π1X − y| ≤

ε

2

}
.

Here π1 is the first coordinate function: π1((x1, . . . , xn)) = x1.
We also denote A(y) the slice of A with first coordinate y:

A(y) = π−11 (y) ∩A.

Definition 2.1. In the above setting. The sliced box dimension at y ∈ R is defined to be
the following quantity:

dimy
BA = − lim

ε→0

logNε(S(y, ε) ∩A)

log ε
,
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if the above limit exists. Otherwise we define the upper/lower sliced box dimension dimB
y
/dimB

y

by taking lim sup / lim inf.

Assouad dimension:
The Assouad dimension of F is

dimA F = inf

{
s ≥ 0 : (∃C > 0) (∀R > 0) (∀r ∈ (0, R)) (∀x ∈ F )

Nr(B(x,R) ∩ F ) ≤ C
(
R

r

)s}
where B(x,R) denotes the closed ball of centre x and radius R.

Later we shall discuss dyadic cubes. For α ∈ (0, 1]. By saying dyadic cubes of side length
2−αk (for a fixed k) we actually mean the collection of cubes with disjoint interiors whose
closure covers the whole Rn. There are many possibilities of such collections, by convention
we require the cube centred at the origin to be inside this collection and each pair of adjacent
cubes share a common boundary.

When we consider Hausdorff dimension, we shall consider covering by dyadic cubes of
different side length (a net with different sizes of holes). In that situation, our collection
of cubes have side length 2−k( with multiple choices of k ∈ N) centred at dyadic rational
points.

3. Proof of theorem 1.3

We shall focus on R2, in this situation we have a clear picture of what is going on. The
arguments work for other cases after some modification. From now on we fix n = 2 and let
G be a cube-Wolff set.

The result of Hausdorff dimension is obvious since any cube-Wolff set contains a cube
and therefore has Hausdorff dimension at least 1.

To see the box dimension result. Let δ > 0 be a small positive number. Then we shall
find approximately 1

100δ many 100δ-separeted points in [1/2, 1]. We denote those points
from small to large as:

r1 < r2 < · · · < rK ,K ≈ (100δ)−1

For each ri, i ∈ [1,K], there is a cube Cri of side length ri contained in G. Any cube
contains 4 sides, therefore there are ≈ 4K many sides of length in [1/2, 2]. Now we can focus
on for example the right most side Iri of each cube Cri . We know that the obstruction of G
having high dimension is the heavy overlap of sides. Then we consider δ-neighbourhood Cδri
of each Cri . Consider the characteristic function χIδri

, if there exist a x ∈ R2 and an integer

M > 0 such that: ∑
i

χIδri
(x) ≥M,

then there are M cubes whose right sides are 2δ close to each other. Because different cubes
have side length at least 100δ difference, we see that the left sides of those M cubes stays at
least 96δ away from each other. This implies that we can find M sides which are 96δ away
from each other therefore union of the δ-neighbourhood of those sides takes area at least:

0.5Mδ.
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On the other hand, we can find an integer M such that:∥∥∥∥∥∑
i

χIδri

∥∥∥∥∥
∞

= M,

we see that: ∥∥∥χ⋃
i I
δ
ri

∥∥∥
L1
≥ 1

M

∥∥∥∥∥∑
i

χIδri

∥∥∥∥∥
L1

≥
0.5δ × 1

100δ

M
=

1

200M
.

From the above argument we see that Gδ takes area at least:

max

{
0.5Mδ,

1

200M

}
≥ 1

40

√
δ.

This gives us the lower bound of the lower box dimension of G:

dimBG ≥ 0.5.

For other cases, ”sides” of cubes are replaced by ”faces” which are subsets of n − 1
dimensional affine hyperplanes (here we allow the case n = 1). Arguing as above we see
that there is a constant c > 0:

|Gδ| ≥ cmax

{
Mδ,

1

M

}
.

Therefore we established the lower bound for lower box dimension, the Assouad dimension
result follows because the Assouad dimension is always greater or equal to the lower box
dimension.

4. Sharpness of theorem 1.3

Dimension 1: There exists subset F of [0, 1] whose distance set |F − F | contains [0, 1].
Among those subsets, we can find F1, F2 such that dimH F1 = 0, dimB F2 = 0.5. And for
every σ > 0 we can find F3 such that dimA F3 ≤ 1/2 + σ.

The construction of F1, F2 can be found in [DHL+13]. For Assouad dimension, we shall
use a result in [Nat92] by Nathanson which says that for all integer n > 1 there exists a subset
B ⊂ {0, . . . , n− 1} such that B +B mod n = {0, . . . , n− 1} and |B| ≤ 2(n log n)1/2 + 2.

Now for any integer n > 1, we find such set B, then we let C = B ∪ (n−B mod n). We
can now construct Cantor set in [0, 1] by restricting n-ary digital expansions. Precisely, we
let

Cn = {x ∈ [0, 1] : n− ary expansion of x contains only digits in C}
Then it is easy to see that |Cn − Cn| contains [0, 1]. We also have the following result
concerning the Assouad dimension of Cn:

dimA Cn = dimH Cn =
log |B|
log n

≤ log(4(n log n)1/2 + 4)

log n
.

Let F3 = Cn for a large enough n we see that dimA F3 ≤ 1/2 + σ.

Remark 4.1. For set F3, we can also apply Solomyak’s result [Sol97] on Palis conjecture
if we only require |F3 − F3| to have positive measure.
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Higher dimensional cases: Having settled down the one dimensional case, we shall
see that we can extend the one dimensional case to any higher dimensional cases. Again we
focus here on R2 and similar arguments lead us the corresponding results in Rn, n ≥ 3.

Pick F ⊂ [0, 1] × {0} ⊂ R2 whose property we shall require later. Then for x ∈ F we
construct two lines passing through x with slope ±1. Denote L(F ) to be the union of all
such lines. Let r ∈ |F − F |, then there exist x1, x2 ∈ F with |x1 − x2| = r. Then the lines
passing through x1, x2 with slope ±1 (there are four of them) will enclose a cube of side

length r/
√

2.
Now it is easy to see that L(F ) can be written as a union of two subsets with lines of

slope 1 or −1. Each of those two sets can be viewed as the Cartesian product of F and R
with a certain affine transformation. From this fact it is easy to see that:

dim(L(F )) = dimF + 1,

here dim can be any dimension we considered above. For example we see that:

dimH L(F1) = 1

and L(F1) contains cubes of all side length in [0,
√

2/2]. After some rescaling, we can obtain
a cube-Wolff set of Hausdorff dimension 1.

The box and Assouad dimension results follow in a similar way.

5. results concerning fractal Kakeya books and grass sets

The following results can be found in [HKM17] with greater level of generalities. In this
paper we will only include detailed discussions for cases which were not included in [HKM17].
Along the lines we will give some heuristic argument how to obtain those results for readers’
convenience.

Lemma 5.1. Let K ⊂ Rn, n ≥ 3 be a β Kakeya book, if β ∈ (n− 2, n− 1) then:

dimHK ≥ n− 2 + 2(β − (n− 1)).

Lemma 5.2. Let β ∈ [0, 1], G ⊂ R2 be a [0, 1]× {0}, β-grass set then:

dimHG ≥ 2β.

Lemma 5.3. Let G ⊂ Rn, n ≥ 3 be a ([0, 1]n−1 × {0}, β)-grass set. Furthermore for all

(x2, . . . , xn−1) ∈ [0, 1]n−2,

we require that G ∩ ([0, 1]× {(x2, . . . , xn−1)} × R) is a ([0, 1]× {(x2, . . . , xn−1, 0)}, β)-grass
set.

Then dimHG ≥ n− 2 + 2β.

We will show the following combinatorial version of lemma 5.2 to illustrate how the
number 2β is obtained. In fact the method appeared in [Wol99].

Lemma 5.4. Let ρ < 1 be a number close to 1. Let δ > 0 be a small number. Let
A ⊂ [0, 1] × {0} be a δρ-separated set with cardinality δ−ρ (assumed to be an integer). The
for any a ∈ A there is an unit segment la passing through a with angle at least 60 degree
against x-axis, for each unit segment la, there are δ−β many disjoint δ-balls centred on la.

Then for an absolute constant C > 0, the Lebesgue measure of the union of all δ-balls is
greater than:

(*) Cδ−ρ−βδ2 − Cδ−2ρδ2 log δ−ρ.
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Remark 5.5. In order that the inequality is not trivial we need ρ < β, and that is why in
the end a 2β bound on the dimension appears.

Proof. There are δ−ρ−β many δ-balls in total. This provide us the first term of (*). But
they could intersect each other.

For two points s1, s2 in [0, 1]×{0}, the δ neighbourhood of ls1 , ls2 intersects with area at
most(lemma 5.6 below):

0.001δ2
2

|s1 − s2|
.

Then the area of intersection of all δ neighbourhoods of line segments is at most:

∑
si,sj∈A

0.001δ2
2

|s1 − s2|
≥ 0.002δ2δ−ρ

δ−ρ∑
i,j=1,i6=j

1

|i− j|

The later sum is bounded from below by δ−ρ log δ−ρ. The result follows by the Bonferroni
inequality. �

Lemma 5.6. Let t1, t2 ∈ [0, 1], consider two unit line segments l1, l2 centred at (t1, 0), (t2, 0)

respectively. Furthermore, the slope of l1, l2 is not in [−
√

3,
√

3]. Denote the extended line of
l1, l2 as L1, L2 respectively. For any positive number ε > 0, if Lε1 ∩Lε1 ∩ ([0, 1]× [−1, 1]) 6= ∅
then the angle θ between l1, l2 satisfies:

tan(θ/2) ≥ |t1 − t2|
2

− 10ε.

Proof. If L1 and L2 intersect with angle θ we see that the condition of this lemma implies
θ ∈ (0, π/3). Then the intersection of their ε neighbourhood is contained in a ball of radius

10ε

tan(θ/2)
.

However, the intersecting point of L1 and L2 must be not very near to the line [0, 1]× {0}.
In fact, if we draw a circle passing through (t1, 0) and (t2, 0) such that the angle of minor
arc between (t1, 0) and (t2, 0) is precisely θ. Then we see that all possible intersecting points

of L1, L2 are on this circle. We also know that the slope of L1, L2 is not in [−
√

3,
√

3]. In
particular this implies that the distance between L1 ∩ L2 and the line [0, 1] × {0} must be
more than:

1

tan(θ/2)

|t1 − t2|
2

.

So from the condition that

Lε1 ∩ Lε1 ∩ ([0, 1]× [−1, 1]) 6= ∅,

we see that

max

{
1

tan(θ/2)

|t1 − t2|
2

− 10ε

tan(θ/2)
, 0

}
≤ 1.

Then we see that:

tan(θ/2) ≥ |t1 − t2|
2

− 10ε.

�
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Lemma 5.3 stated here was not actually proved in [HKM17], for simplicity we shall show
a special case when β = 1 then for general β, we can either modify the following proof with
Bonferroni inequality or we use similar argument discussion in [HKM17, section 5]. We note
that the L2 argument used there was introduce by Cordoba [Cor77] and our Bonferroni
argument is actually a combinatorial version of the same argument.

proof of lemma 5.3 with β = 1. Fix arbitrarily a k0 > 0. Suppose we cover G with dyadic
cubes of disjoint interiors of radius not greater than 2−k0 . We see that for any point x =
(x1, x2, . . . , xn−1, 0) ∈ [0, 1]n−1 × {0} there exits at least one k ≥ k0 such that the line
segment lx passing through x is covered significantly by cubes of side length 2−k.

Formally, let

Fk = {Bi : i ∈ N, Bi has radius in [2−k−1, 2−k]} and Fk =
⋃
i∈Fk

Bi.

Then for any x as mentioned above, there exist a k ≥ k0 such that:

H1(lx ∩ Fk) ≥ 3

π2

1

k2
.

Now for each (x2, . . . , xn−1) ∈ [0, 1]n−2, we see that G∩ ([0, 1]× {(x2, . . . , xn−1)} ×R) is
a [0, 1]× {(x2, . . . , xn−1, 0)}-grass set. We denote the following sets:

Ck(x2, . . . , xn−1) =

{
x1 ∈ [0, 1] : x = (x1, . . . , xn−1, 0),H1(lx ∩ Fk) >

3

π2

1

k2

}
.

The point here is that lx is not only passing through x, it is actually inside

[0, 1]× {(x2, . . . , xn−1)} × R.

For each k, consider the dyadic decomposition of [0, 1] with disjoint intervals of length
2−αk. Here we consider α < 1. We denote the number of such intervals intersecting
Ck(x2, . . . , xn−1) as Nk(x2, . . . , xn−1).

Then we see that H1(Ck(x2, . . . , xn−1)) ≤ 2−αkNk. Then it is easy to see that:∑
k

2−αkNk(x2, . . . , xn−1) ≥ 1.

Therefore there exist at least one k ≥ k0 such that 2−αkNk(x2, . . . , xn−1) ≥ 6
π2

1
k2 .

Finally, we denote the following sets:

Dk =

{
(x2, . . . , xn−1) ∈ [0, 1]n−2 : 2−αkNk(x2, . . . , xn−1) ≥ 6

π2

1

k2

}
.

Let Mk denote the number of 2αk dyadic cubes intersecting Dk, we see that:∑
k

2−α(n−2)kMk ≥ 1,

therefore there exists at least one k ≥ k0 such that 2−α(n−2)kMk ≥ 6
π2

1
k2 .

To summarize, we obtained here a k ≥ k0, such that there are at least Mk 2−αk-
separated points in Dk. Suppose (x2 . . . , xn−2) is one of them. We see that there are
at least Nk(x2, . . . , xn−2) 2−αk-separated points in Ck(x2, . . . , xn−2). Let x1 be one of them,
then we see that for x = (x1, x2, . . . , xn−2, 0), the line segment lx is covered significantly:

H1(lx ∩ Fk) >
3

π2

1

k2
.
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We can also obtain a cardinality version of the above inequality:

#|Fk intersecting lx| ≥
3

π2k2
2−(n−1)k

1

2−nk
.

Then overall we see that for some constant c1, c2 > 0 (Bonferroni):

#|Fk| ≥ c1k−62(1+α(n−1))k − c2k−4 log(2αk)2αkn.

For any α < 1 we see that:

#|Fk| & k−621+α(n−1).

The above inequality holds for infinitely many k by choosing different k0 →∞. We see that:

dimHG ≥ 1 + α(n− 1),

as α can be arbitrarily close to 1 we see that:

dimHG = n.

�

6. Sliced box dimension

Before we prove largeness in general results, some geometric notions are needed. In this
section we introduce what we shall call the sliced box dimension and discuss some of its
properties. We will only need lemma 6.4 and lemma 6.5.

Let n ≥ 2 be an integer. We consider A ⊂ Rn. Let t ∈ Sn−1 be a directional vector, we
shall consider slices of A with hyperplanes orthogonal with t.

Without loss of generality, we assume t = (1, 0, 0, . . . , 0). For any y ∈ R, we consider the
stripe of width ε > 0:

S(y, ε) =
{
X ∈ Rn : |π1X − y| ≤

ε

2

}
.

Here π1 is the first coordinate function: π1((x1, . . . , xn)) = x1.
We also denote A(y) the slice of A with first coordinate y:

A(y) = π−11 (y) ∩A.

Definition 6.1. In the above setting. The sliced box dimension at y ∈ R is defined to be
the following quantity:

dimy
BA = − lim

ε→0

logNε(S(y, ε) ∩A)

log ε
,

if the above limit exists. Otherwise we define the upper/lower sliced box dimension dimB
y
/dimB

y

by taking lim sup / lim inf.

One simple observation is that dimy
BA ≥ dimBA(y) for all y. It is also simple to see that

such inequality can be strict.
We now show the following property of sliced box dimension.

Lemma 6.2. Let A ⊂ Rn be a bounded Borel measurable set. Then ∀σ > 0 we can find a
y ∈ R, such that:

dimB
yA ≥ dimHA− 1− σ.



12 HAN YU

Proof. We shall first show that the result holds when we replace dimB
y by dimB

y
. With out

loss of generality we assume that π1(A) ⊂ [0, 1].
Suppose that for a σ > 0 we have for all y ∈ [0, 1] such that:

dimB
y
A < dimHA− 1− σ.

By definition, for all y ∈ [0, 1], there exists a r(y) > 0 such that:

(*) r < r(y) =⇒ Nr(S(y, r) ∩A) ≤
(

1

r

)dimH A−1−0.5σ

By Besicovich covering theorem (see [Mat99, theorem 2.7]) we see that for all δ > 0, we
can find a countable collection of intervals Ii = (yi − 0.5ri, yi + 0.5ri), i ∈ N and a positive
number M (depends on n) such that:

∀i ∈ N, ri ≤ δ.

∀i ∈ N, ri ≤ r(yi).∥∥∥∥∥∑
i

χIi

∥∥∥∥∥
∞

< M

Further more Ii, i ∈ N form a covering of π1(A).
In particular we can find a covering of A with collection of Nr(S(yi, ri) ∩ A) many balls

of radius ri with i ranging over N. Therefore we see that for s ∈ R:

Hsδ(A) ≤
∑
i

Nr(S(yi, ri) ∩A)(ri)
s ≤

∑
i

(ri)
s

(
1

ri

)dimH A−1−0.5σ

.

Then it is easy to see that whenever s > dimHA− 0.4σ:

Hsδ(A) ≤
∑
i

(ri)
1+0.1σ ≤ δ0.1σ

∑
i

ri ≤Mδ0.1σ.

Therefore we see that:

Hs(A) = 0.

The above argument shows that dimHA ≤ s for all such s and therefore:

dimHA ≤ dimHA− 0.4σ.

This is a contradiction.
For lower sliced box dimension. We see that (*) is no longer true. However we still have

the following statement:

∀y ∈ R,∀ε > 0,∃r < ε such that Nr(S(y, r) ∩A) ≤
(

1

r

)dimH A−1−0.5σ

Now with y ranging over [0, 1] and for each y we can find a sequence ri(y) → 0 such
that the conclusion of the above statement holds. We see that the conditions of Besicovich
covering theorem ([Mat99, theorem 2.7]) are still satisfied and we can repeat the above
argument to obtain the result concerning lower sliced box dimension. �

We recall here the Vitali covering theorem for Lebesgue measure ([Mat99, theorem 2.8]
for more general Radon measure result)
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Theorem (Vitali). Let B be a Vitali convering system for E ⊂ [0, 1], namely, for all x ∈ E
there exist infinitely many B ∈ B with arbitrarily small radius such that:

x is the center of B.

Then there exists a countable sub-collection B1 ⊂ B such that B1 consists disjoint intervals
and

E \
⋃
B∈B1

B is a Lebesgue null set.

From the above theorem, we can obtain the following result which has stronger conclusion
but requires stronger conditions at the same time.

Lemma 6.3. Let A ⊂ Rn be a bounded Borel measurable set. Suppose that π1(A) = [0, 1],
if there exists a positive number t > 0 such that whenever E ⊂ [0, 1] has positive Lebesgue
measure we have the following bound:

dimH(A ∩ π−11 (E)) ≥ t,
then: {

y ∈ [0, 1] : dimB
yA ≥ t− 1

}
has full Lebesgue measure.

Proof. Denote for each σ > 0 the following set:

Iσ =
{
y ∈ [0, 1] : dimB

yA ≥ t− 1− σ
}
.

Denote µ to be the Lebesgue measure. Fix an arbitrary σ > 0, suppose that:

µ(Iσ) < 1.

Then µ(Icσ) > 0. We have the following statement:

y ∈ Icσ =⇒ dimB
yA < t− 1− σ.

Therefore for all y ∈ Icσ, there exists a countable sequence of positive numbers ri(y)→ 0 as
i→∞ such that:

Nri(y)(S(y, ri(y)) ∩A) ≤
(

1

ri(y)

)t−1−0.5σ
.

We see that ri(y) with i ranging over N and y ranging over Icσ is a Vitali covering system
for Icσ.

By Vitali covering theorem for Lebesgue measure we see that there exists a countable
collection of disjoint intervals Bi such that:

µ(Icσ \
⋃
i

Bi) = 0.

Let us fix an integer k by the above argument we can find a collection of disjoint intervals
Bk,i for such that:

µ(Bk,i) ≤ 2−k,

µ(Icσ \
⋃
i

Bk,i) = 0.

Denote the centre of Bk,i by yk,i ∈ Icσ and the length by rk,i (rk,i ≤ 2−k). Then we see that

for each k there exists a covering of A∩π−11 (
⋃
iBk,i) with collections of Nrk,i(S(yk,i, rk,i)∩A)

many balls of radius rk,i and i ranging over N. We can perform the above step for any k ≥ k0
with an arbitrarily fixed integer k0.
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Let A′ be the following set:

A′ = A
⋂
k≥k0

π−11

(⋃
i

Bk,i

)
⊂ A ∩ π−11

(⋃
i

Bk0,i

)
.

From the above argument we see that:

µ

Icσ \ ⋂
k≥k0

(⋃
i

Bk,i

) = 0

therefore we see that:

(**) dimH(A′) ≥ t.

Now we see that (k0 is fixed and δ = 2−k0):

Hsδ(A′) ≤ Hsδ

(
A ∩ π−11

(⋃
i

Bk0,i

))

≤
∑
i

Nrk0,i(S(yk0,i, rk,i) ∩A)(rk0,i)
s ≤

∑
i

(rk0,i)
s

(
1

rk0,i

)t−1−0.5σ
.

Now if s > t− 0.4σ then:

Hsδ(A′) ≤
∑
i

r1+0.1σ
k0,i

≤ 2−0.1σk
∑
i

rk0,i ≤ 2−0.1σk0 = δ0.1σ.

Where the last inequality follows from the fact that Bk0,i, i ∈ N are disjoint. As k0 →∞ we
see that δ → 0 and hence we see that:

Hs(A′) = 0.

This implies that for all s > t− 0.4σ:

dimHA
′ ≤ s.

Together with (**) we see that:

t ≤ dimHA
′ ≤ t− 0.4σ.

This is impossible and therefore we see that:

∀σ > 0, µ(Iσ) = 1.

Then we see that: {
y ∈ [0, 1] : dimB

yA ≥ t− 1
}

=
⋂
k∈N

Ik−1

the above set has full measure and this concludes the proof. �

Lemma 6.4. Let A ⊂ Rn be a bounded Borel measurable set. Let h : [0, 1] → [0, 1] be a
continuous function such that for all E ⊂ π(A) with:

dimHE ≥ τ =⇒ dimH(π−11 (E) ∩A) ≥ h(τ).

Then we have the following:

dimHE ≥ τ =⇒ sup
y∈E

dimB
y
A ≥ h(τ)− τ.
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Proof. Let dimHE ≥ τ. Then let 0 < τ1 < τ , we see that Hτ1(E) =∞.
By taking a subset if necessary we can assume that Hτ1(E) = 1. Further, by Egorov

theorem, after dropping out a small Hτ1 measure subset of E if necessary we can assume
that the lim sup in the definition of lower sliced box dimension along ri = i−1 is uniform on
E:

dimB
y
A = − lim sup

i→∞

logNi−1(S(y, i−1) ∩A)

log i−1
.

This means that for any δ > 0 there exists a uniform constant Cδ which does not depend
on y ∈ E such that:

∀i ∈ N, Ni−1(S(y, i−1) ∩A) ≤ Cδ
(

1

i

)dimB
y
A+δ

.

BecauseHτ1(E) = 1, for all small enough ε > 0 we can find a countable covering Bk, k ∈ N
of E such that:

diam(B̃k) ≤ ε,
∑
k

diam(B̃k)τ1 < 2.

In particular for all y ∈ E there is a B(y) among those Bk, k ∈ N such that y ∈ B(y). B(y)
may not be centred at y, however it is simple to see that:

B(y) ⊂ B̃(y)

where B̃(y) is the interval centred at y with length 2 times that of B(y).
Then we obtain a covering of π−11 (E) ∩A so that:

Hdε (π−11 (E) ∩A) ≤
∑
k

Cδdiam(Bk)ddiam(Bk)−(dimB
y
A+δ).

If d > supy∈E dimB
y
A+ 2δ + τ1 then we see that:

Hdε (π−11 (E) ∩A) ≤ Cδεδ
∑
k

diam(Bk)τ1 ≤ 2Cδε
δ.

This implies that for all δ > 0, τ1 < τ :

dimH(π−11 (E) ∩A) ≤ sup
y∈E

dimB
y
A+ 2δ + τ1.

This implies further that:

dimH(π−11 (E) ∩A) ≤ sup
y∈E

dimB
y
A+ τ.

On the other hand the condition of this lemma implies that:

dimH(π−11 (E) ∩A) ≥ h(τ).

Therefore we see that:

sup
y∈E

dimB
y
A ≥ h(τ)− τ.

�

For the end point dimHE = 1, we can obtain the following slightly stronger lemma:
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Lemma 6.5. Let A ⊂ Rn be a bounded Borel measurable set and h(1) be a positive number
such that for Borel subsets E of R:

dimHE = 1 =⇒ dimH(π−11 (E) ∩A) ≥ h(1).

Then we have the following:

dimHE = 1 =⇒ sup
y∈E

dimB
yA ≥ h(1)− 1.

Proof. Without loss of generality we assume that E = π1(A) with Hausdorff dimension 1.
Let σ > 0, then by definition we see that:

∀y ∈ π1(A),∀ε > 0,∃r < ε such that Nr(S(y, r) ∩A) ≤
(

1

r

)supy∈π1(A) dimB
yA+σ

By Besicovich covering theorem (see [Mat99, theorem 2.7]) we see that for all δ > 0, we
can find a countable collection of intervals Ii = (yi − 0.5ri, yi + 0.5ri), i ∈ N and a positive
number M (depends on n) such that:

∀i ∈ N, ri ≤ δ.

∀i ∈ N, ri ≤ r(yi).∥∥∥∥∥∑
i

χIi

∥∥∥∥∥
∞

< M

Further more Ii, i ∈ N form a covering of π1(A).
In particular we can find a covering of A with collection of Nr(S(yi, ri) ∩ A) many balls

of radius ri with i ranging over N. Therefore we see that for s ∈ R:

Hsδ(A) ≤
∑
i

Nr(S(yi, ri) ∩A)(ri)
s ≤

∑
i

(ri)
s

(
1

ri

)supy∈π1(A) dimB
yA+σ

.

Then it is easy to see that whenever s > supy∈π1(A) dimB
yA+ 1 + 1.1σ:

Hsδ(A) ≤
∑
i

(ri)
1+0.1σ ≤ δ0.1σ

∑
i

ri ≤Mδ0.1σ.

Therefore we see that:

Hs(A) = 0.

The above argument shows that dimHA ≤ s for all such s and therefore:

h(1) ≤ dimHA ≤ sup
y∈π1(A)

dimB
yA+ 1.

Thus the result follows;.
�
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7. Largeness in general

Now we can finally prove theorem 1.4. We first show that the exceptional set has Lebesgue
zero then we point out how to obtain the dimension results.

Let n ≥ 1 be an integer. Let G ⊂ Rn be a cube-Wolff set. We shall define the ’cone’-set
of G as follows:

Cone(G) =
{

(t, x2, . . . , xn+1) ∈ Rn+1 : t ∈ [0, 1], (x2, . . . , xn+1) ∈ Gt
}
.

Intuitively the ’cone’-set Cone(G) looks like a union of pyramids.
From the construction we see that:

(Cone(G))(t) = Gt,

recall that A(t) denotes the section π−11 (t) ∩A.
It is not hard to see that for any E ⊂ [0, 1] with positive measure, the following set:

π−11 (E) ∩ Cone(G)

is a Kakeya book in Rn+1.
Therefore by lemma 5.1 with β = n we see that dimH(π−11 (E) ∩ Cone(G)) = n+ 1.
By lemma 6.3 we see that for Lebesgue a.e t ∈ [0, 1]:

dimB
tCone(G) = n.

Fix such a t. Let σ > 0 be an arbitrarily chosen positive number. We see that for all
small enough r > 0:

Nr(S(t, r) ∩ Cone(G)) >

(
1

r

)n−σ
.

Now consider the set

S(t, r) ∩ Cone(G),

covering this set with r-balls is essentially the same as covering
⋃
y∈(t−r/2,y+r/2)Gy with

r-balls. From the construction of ’cone’-set we see that there exists an absolute constant
C > 0 such that: ⋃

y∈(t−r/2,y+r/2)

Gy ⊂ GCrt ,

here GCrt is the Cr-neighbourhood of Gt. Then form the above arguments we see that for
all small enough r > 0:

Nr(G
Cr
t ) ≥

(
1

r

)n−σ
.

This implies that dimBGt ≥ n− σ. As σ > 0 is arbitrary we see that:

dimBGt = n.

The above equality holds for Lebesgue a.e t ∈ [0, 1].
Now we want to estimate the size of exceptional set by dimension. Again by lemma 5.1

with β = n− 1 + τ , we see that G satisfies lemma 6.4 with h(τ) = n− 1 + 2τ.
Then let

Ṽ (σ) = {t ∈ [0, 1] : dimB
t
Cone(G) ≤ n− σ}.

We see that:

n− σ ≥ sup
y∈Ṽ (σ)

dimB
y
Cone(G) ≥ h(dimH Ṽ (σ))− dimH Ṽ (σ) = n− 1 + dimH Ṽ (σ).
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Therefore we see that:

Ṽ (σ) ≤ 1− σ.
For the end point case let

V̂ (σ) = {t ∈ [0, 1] : dimB
tCone(G) ≤ n− σ}.

Suppose dimH V̂ = 1, then we can use lemma 5.3, lemma 6.5:

n− σ ≥ sup
y∈V̂ (σ)

dimB
yCone(G) ≥ n− 1 + 2− 1,

this is not possible when σ > 0.
The proof for cube-Wolffff sets is the same, we shall use lemma 5.3 instead of lemma 5.1

in the above argument. The reason is that if we focus on a vertex (upper left one) of each
cube, then we obtain a grass set as a subset of Cone(G). Then we can use the results related
with grass sets.

8. (α, β)-cube-Wolffff sets, proof of theorem 1.15

In this section we discuss the general largeness of α, β-cube-Wolffff sets. For the corre-
spoding cube-Wolff sets, the arguments are similar and we shall not give too much details
here.

Now consider an α set contained in [0, 1]2. Let G ⊂ R2 be such that for all point a ∈ A
there exists a β-square contained in G and centred at a whose side length is within [1/2, 1].
Here a β-square is a β set contained in a square.

We can construct Cone(G) in a similar way considered in previous sections. Now Cone(G) ⊂
R3 is an union of ’fractal’-pyramid. We want to show that whenever E is a subset of interval
of full Hausdorff dimension:

(**) dimH Cone(G) ∩ π−11 (E) = min{3, α+ β + 1}.

Then we can use lemma 6.5 to show that the sliced box dimension of Cone(G) is min{2, α+β}
with perhaps an exceptional set of Hausdorff dimension smaller than 1. But now for a
generic t ∈ [0, 1] and a positive number δ > 0 the box counting Nδ(π

−1
1 (B(t, δ))∩Cone(G))

is somehow the same as box counting of Gδt : there exists an absolute constant C > 1 such
that:

C−1Nδ(G
C−1δ
t ) ≤ Nδ(π−11 (B(t, δ)) ∩ Cone(G)) ≤ CNδ(GCδt ).

Now we are left with proving (**) for α ≤ 1 to conclude the theorem.
We shall show the box dimension result and the Hausdorff dimension result follows by a

further pigeonhole principle. Now let A ⊂ [0, 1]2 be an α-set. Then there exist a direction
θ such that πθ(A) has Hausdorff dimension min{α, 1} by Marstrand’s projection theorem.
We can require θ to be within angle [44, 45] degree against the x-axis.

We shall now assume α ≤ 1. The projection πθ(A) might not be a α set, but we can
assume it to be an α−-set by taking a subset if necessary and since α− can be made arbitrarily
close to α we can see in the end it is no harm to assume further that πθ(A) is an α-set.
With exact the same reasoning we can also assume that E is an 1-set. And the intersection
with π−11 (E) is implicitly assume in the following discussion.

For any two points in πθ(A) there exist two corresponding points on the fibers in A. More
precisely, take

πθ((x, y)) = x cos θ + y sin θ,
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then for any two points a1, a2 ∈ πθ(A) we can choose two elements b1, b2

b1 ∈ π−1θ (a1), b2 ∈ π−1θ (a2).

If there are multiple choices we only need to chose one of them. In the end we obtain a
section of πθ(A) in A. We denote this section as set S. For each s ∈ S there exist a pyramid
with the vertex at s. We can take one of the four sides of each pyramid, for convenience
we choose the left face of each pyramid which is orthogonal with x-axis. For a point s ∈ S,
we call the left face orthogonal with x-axis of the pyramid with vertex at s Fs, then Fs is a
triangle and for any two s1, s2 ∈ S, Fs1 and Fs2 are parallel.

Now we shall assume all the α-sets and β-sets in considerations are actually of box
dimension β, α in a uniform way. Namely for δ > 0 which is small enough all β-sets have δ
box counting number equal to δ−β and all α-sets have δ box counting number equal to δ−β .

Because θ is transverse to y-axis, we see that for two points s1, s2, the intersection of
δ-neighbourhoods F δs1 ∩ F

δ
s2 is at most:

Cδδ1−β
1

|π1(s1)− π1(s2)|
for a constant C > 0(see lemma 5.6 for details). Here the power 1− β comes from the fact
that each Fs is essentially a Cartesian product of a β-set with the unit interval [0, 1].

Now fix a ρ < 1 and let δ > 0 be of form 2−m with integer m→∞. For each such δ choose
a finite subsetK of S which is δρ separated and with cardinality within [0.5δ−ρα, δ−ρα]. Then
each F δk , k ∈ K has box counting number within [0.5δ−β−1, δ−β−1]. They sum up to at least

0.25δ−ρα−β−1.

We can then use Bonferroni inequality to obtain a lower bound of the δ box counting number
of
⋃
k F

δ
k :

Nδ

(⋃
k

F δk

)
≥ 0.25δ−ρα−β−1 − C

∑
i,j∈K

δ−β

|i− j|δρα
,

the sum in the above inequality can be bounded from above by:

Cδ−ρα−βδ−ρα log δ−ρα

because α ≤ 1 we see that for all small enough δ:

Nδ

(⋃
k

F δk

)
≥ 0.1δ−ρα−β−1.

Then as we can also choose ρ close to one, we see that the lower box dimension of Cone(G)
is at least α+ β + 1 if α ≤ 1 at least if all the fractal sets attain their dimension uniformly
as mentioned before.

Now we shall pursue a pigeonhole principle for Hausdorff dimension.Fix a number ρ ∈
(0, 1). For each s ∈ S, Fs is a β + 1 set, and therefore:

lim
δ→0
Hβ+1
δ (Fs) > 0.

Because S has positive α-Hausdorff measure, we can find a subset S′ of S with positive
α-Hausdorff measure and a positive number ε > 0:

s ∈ S′ =⇒ lim
δ→0
Hβ+1
δ (Fs) > ε.

Further by Egorov’s theorem we can assume the above limit holds uniformly within S′.
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For convenience we denote S′ with the original notation S.
Choose a large enough integer m and consider any covering with dyadic cubes of side

length smaller than 2−m. Since every Fs is a β + 1 set (in an uniform way as discussed
above), consider the following:

C(s, k) = {dyadic cubes of side length 2−k intersecting Fs},

|C(s, k)| =
⋃

Cube∈C(s,k)

Cube,

#C(s, k) = Cardinality of C(s, k).

Then we see that: ∑
k≥m

#C(s, k)2−(β+1)k ≥ ε.

Then there exists a k ≥ m such that:

#C(s, k) ≥ επ2

6k2
2−(β+1)k.

Now for any k ≥ m, consider the following:

D(k) =

{
s ∈ S : C(s, k) ≥ επ2

6k2
2−(β+1)k

}
.

#D(k) = cardinality of a maximal 2−ρk separeted subset of D(k)

Then we see that by choosing another larger m and smaller ε if necessary:∑
k≥m

#D(k)2−ραk ≥ ε.

Then there exists a k ≥ m such that:

#D(k) ≥ επ2

6k2
2−ραk.

Choose such a k, dropping all other dyadic cubes. Then we are in the situation such that
we can apply the Bonferroni argument discussed before. From here we see that:

dimH Cone(G) ∩ π−11 (E) = α+ β + 1

whenever dimHE = 1 and α ≤ 1. From here the frist part of this theorem concludes.
For the upper dimension result, we should work with lemma 6.4. Let E be a τ -set and

by the same argument as before:

Nδ

(⋃
k

F δk

)
≥ 0.25δ−ρα−β−τ − Cδ−ρα−βδ−ρα log δ−ρα.

Then if τ ≥ α

Nδ

(⋃
k

F δk

)
≥ 0.1δ−ρα−β−τ .

This implies that

dimH Cone(G) ∩ π−11 (E) = α+ β + τ.

And the second part of this theorem concludes.
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9. An example with Assouad dimension being always maximal

With the largeness in general results at hand. We can construct a class of (α, β)-
cube(circle)-Wolffff sets in R2. A long the lines of the celebrate Furstenberg conjectures
see [Shm17] and [Wu16] together with proofs of one of the conjectures. For original refer-
ence see [Fur70]. The idea is that if the centres of cubes/circles form a self-similar set or
other sort set invariant under some dynamics and the sizes of cubes/circles are also assigned
in a dynamical way which is ’independent’ of the dynamics of the centres then we should
expect the ’largeness in general’ actually implies ’largeness for all’.

Given a family of self-similarities f1, . . . , fk for an integer k ≥ 2. Let the contraction
ratio be ri, i ∈ {1, . . . , k} and translations be ai, i ∈ {1, . . . , k}. Then given any string
S = s1s2 . . . sN of {1, . . . , k} of length N we denote the map:

PS = fsN ◦ · · · ◦ fs1 .

Suppose the attractor K of the self-similarities has open set condition. We can assume
(0, 0) ∈ K.

We put a β-cube(circle) centred at (0, 0) with radius 1. Given positive numbers ρi, i ∈
{1, . . . , k}. For any string S, we put a β-cube(circle) centred at PS((0, 0)) with radius∏N
i=1 ρsi . For each integer N we denote GS to be the union of all above mentioned circles

centred at PS′((0, 0)) with S′ ranging over all strings with initial(prefix) S. This notation
will not conflict the previous notion of Gt with t ∈ [0, 1].

The resulting set is not quite a cube(circle)-Wolffff set because it based on a countable
set with Hausdorff dimension 0. But we should now discuss the Assouad dimension of such
a set. For convenience for each a ∈ A we denote Ca as the circle centred at A which is
contained in G.

Assume now that there exist i, j ∈ {1, . . . , k} such that:

ρi
ri
< 1 <

ρj
rj

and
log(ρi/ri)

log(ρj/rj)
/∈ Q.

Let G be the union of all the circles constructed above. Then dimAGt = min{α + β, 2}
for all t ∈ (0, 1].

Without loss of generality we assume that α + β ≤ 2 and dimAG < α + β. Let κ be a
number smaller than α + β but greater than dimAG, let δ > 0 be a small positive number
such that for any two positive numbers r,R : 0 < r < R < 1, R/r > δ−1 we have the
following inequality:

(*) Nr(B(x,R) ∩G) <

(
R

r

)κ
.

For convenience let ρ1,2, r1,2 be such that:

ρ1
r1

< 1 <
ρ2
r2

and
log(ρ1/r1)

log(ρ2/r2)
/∈ Q.
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If we consider G1 and perform the inverse map f−11 restricted on the centres of circles
that build up G1 and at the same time rescale each circle with a factor r−11 then the resulting
set we obtain is a union of circles with centres exactly the same as G, namely A. For all
a ∈ A the circle centred at A has radius ρ1/r1 times that of Ca. Which means we obtained
Gρ1/r1 . Then we see that:

Nδ(Gρ1/r1) = Nr1δG
1.

The same equality holds for G2 as well. And in general for any string S consists only 1, 2 of
length N . For example 121122. Then we see that:

Nδ(G∏
i ρsi/rsi

) = Nδ
∏
i rsi

GS .

Now we shall carefully choose sequences S such that:∏
i

ρsi
rsi
≈ 1.

Indeed, if a sequence S has m 1′s and n 2′s then∏
i

ρsi
rsi

=

(
ρs1
rs1

)m(
ρs2
rs2

)n
.

Then we see that:

log
∏
i

ρsi
rsi

= m log(ρ1/r1) + n log(ρ2/r2),

now because log(ρ1/r1) < 0 < log(ρ2/r2) and they are rational independent, we can see that{
m log(ρ1/r1) + n log(ρ2/r2) : (m,n) ∈ Z2

+

}
is dense in R in particular it is dense in [−1/2, 1/2], we only choose (m,n) such that:

m log(ρ1/r1) + n log(ρ2/r2) ∈ [−1/2, 0].

There are infinitely many different choices and we see that for the corresponding strings S:∏
i

ρsi
rsi

=

(
ρs1
rs1

)m(
ρs2
rs2

)n
∈ [e−1/2, 1].

Then for those S we see that if G is contained in a ball of radius M > 1 then GS is
contained in a ball of radius M

∏
i rsi and therefore we see that:

Nδ(G∏
i ρsi/rsi

) = Nδ
∏
i ri
GS ≤

(
M
∏
i rsi

δ
∏
i rsi

)κ
.

Now for any t ∈ [e−1/2, 1] we choose a sequence of strings Sj such that limj→∞
∏
i

ρsj,i
rsj,i

=

t, then we see that there exists a constant C and for all large enough j:

Nδ(Gt) ≤ CNδ(G∏
i ρsj,i/rsj,i

) ≤ CM2δ−κ.

The above argument holds for all t ∈ [e−1/2, 1] and we see that dimBGt < κ (uniformly) for
t ∈ [e−1/2, 1]. This contradicts with theorem 1.15 because the exception set should not have
positive measure.
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10. further questions

Apart from the fractal grass set/fractal Kakeya book conjectures stated in the first section
of this paper, there are still some questions to ask about.

Largeness in general for Hausdorff or packing dimension One natural question
to ask in concerning with theorem 1.4, 1.5 is that can we obtain Hausdorff or packing
dimension result. If we allow some more variations of cub-Wolff(ff) sets then by using the
classical Marstrand slicing theorem [Mat99, chaper 10] we can obtain some results.

By the approach here, we used sliced box dimension to obtain the results. It seems
unlikely that such strategy works for Hausdorff or packing dimension.

About (α, β)-circle-Wolff(ff) sets
We omit the proof of largeness in general results for circle sets in this paper because it

is similar to that of cube sets. However, because the non-vanishing of the curvature, two
β-circle intersect in a mild way without really heavy overlaps. The curvature corresponds
naturally to dimension 1/2. And we think that for β > 1/2, any (α, β)-circle-Wolff(ff) set
should have Hausdorff/Box/Assouad dimension equal to min{α+ β, 2} at least for α ≤ 1.

Wolff’s original result implies the lower bound 3β + α − 2. Which establishes the case
when β = 1.

About (α, β)-cube-Wolff(ff) sets
We do not think (α, β)-cube-Wolff(ff) sets always have dimension min{α+β, 2}. We can

obtain some sort of lower bounds on box dimension. For example let G be an (α, β)-cube-
Wolffff set. We assume that α ≤ 1 and by Marstrand projection theorem we can in fact
consider the α-set A is embedded in a unit segment which is of angle within [44, 45] degree
against x-axis.

Further more we require all β-cubes have box dimension β in an uniform way together
with the α-set. For any δ > 0, we can choose in A a 100δ separated finite set F with
cardinality ≈ δ−α.

For each a ∈ F there is a cube centred at a, and δ-neighbourhood of this cube can be
seen as a disjoint union with ≈ δ−β many δ cubes.

There are now ≈ δ−α−β many δ-cubes, but some of them may have large multiplicity. If
there is a δ cube c which is counted M times then there are at least M cubes with a side
within 2δ distance from c. Then as the centres of the cubes are 100δ separated we see that
we can find at least M/2 many 96δ separated sides of cubes. This gives us a lower bound of
box counting:

Mδ−β .

On the other hand if no δ-cubes have more than M multiplicity then we obtain another
lower bound of box counting:

M−1δ−α−β .

Balancing the above two lower bounds we see that there is in fact an lower bound of box
dimension:

β + α/2.

To show that this is in fact sharp we consider α < 1/2 and a α-set A ⊂ [0, 1]. Further we
assume that A has box dimension equal to α and A+A has box dimension equal to 2α.

Then we embed A into 0× [0, 1], and for each (0, a) we construct two lines l±1(a) passing
through a with slope ±1.

For each line, we embed a middle-third Cantor set ( by restricting a homogeneous linear
map from [0, 1] to the line l±(a) ) and extend it with period 1. Then as a result the union
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of the lines has box dimension α + β. The union of lines contains β-cube centred every
where in 1

2 (A+A) which has dimension 2α. Then we obtain a (2α, β)-cube-Wolffff set with
dimension α+ β.

Similar consideration holds for (α, β)-cube-Wolff sets.
However, we assumed α ≤ 1, but what happens if α > 1? Repeating the argument above

will lead us to a lower bound β + 1.
Some further questions about cube sets
So far we have only considered cube sets with so-called coordinate cubes. There are also

other configurations for example orientations of the cubes. For circle sets, orientation does
not matter. In this more general situation, how to formulate the largeness in general. A
possible guess is still keeping all the centres and orientations fixed while shrinking the side
length. In this case the largeness in general just comes for free by using the dimension result
about the special grass sets as in lemma 5.3. An interesting generalization is to only consider
vertices of the cubes, then we still have a grass set with the cone set construction but it is
not necessary to be of any special types. For this situation, we really need to proof the grass
set conjecture.
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d’Analyse Mathématique (2014).

[Mar87] John Marstrand, Packing circles in the plane, Proceedings of the London mathematical society
(3)55 (1987), no. 1, 37–58.

[Mat99] Pertti Mattila, Geometry of sets and measures in euclidean spaces: Fractals and rectifiability,

Cambridge Studies in Advanced Mathematics, Cambridge University Press, 1999.
[Nat92] Melvyn B Nathanson, On a problem of rohrbach for finite groups, Journal of Number Theory

41 (1992), no. 1, 69–76.
[Sch97] Wilhelm Schlag, A generalization of bourgain’s circular maximal theorem, Journal of the Amer-

ican mathematical society (1997), no. 10, 103–122.

[Shm17] Pablo Shmerkin, On furstenberg’s intersection conjecture, self-similar measures, and the lq

norms of convolutions, Preprint v2: https://arxiv.org/abs/1609.07802 (2017).

[Sol97] Boris Solomyak, On the measure of arithmetic sums of cantor sets, Indagationes Mathematicae

8 (1997), no. 1, 133 –141.
[Tho17] R. Thornton, Cubes and their centers, Acta Mathematica Hungarica 152 (2017), no. 2, 291–313.

[WK99] Thomas Wolff and Lawrence Kolasa, On some variants of the kakeya problem, Pacific Journal
of Mathematics 190 (1999), no. 1, 111–154.

[Wol97] Thomas Wolff, A kakeya type problem for circles, American Journal of Mathematics 119 (1997),

no. 5, 985–1026.

[Wol99] Thomas Wolff, Recent work connected with the kakeya problem, Prospects in mathematics (1999),
129–162.



CUBES, SIDE LENGTHS AND CENTRES 25

[Wu16] Meng Wu, proof of furstenberg’s conjecture on the intersections of ×p and ×q-invariant sets,

Preprint v2: https://arxiv.org/abs/1609.08053 (2016).

Han Yu, School of Mathematics & Statistics, University of St Andrews, St Andrews, KY16

9SS, UK,
E-mail address: hy25@st-andrews.ac.uk


