Scam Alert

Scam Alert

Please verify and be careful about any phishing and scam attempts from external companies.
All conferences and research programs at IML are free of charge.
We will not ask you for any payments regarding your accommodation or travel arrangements

Shagnik Das: Fractionally intersecting families

Date: 2024-07-11

Time: 09:00 - 10:00

Speaker
Shagnik Das, National Taiwan University

Abstract
Introduced by Balachandran, Mathew and Mishra, a $\theta$-intersecting family, where $\theta \in (0,1)$, is a family $\mathcal{F}$ of subsets of $[n]$ such that for any distinct sets $F, G \in \mathcal{F}$, we have $|F \cap G| \in \{ \theta |F|, \theta |G| \}$. Balachandran, Mathew and Mishra proved that any $\theta$-intersecting family has size $O(n \log n)$, and conjectured that this could be improved to $O(n)$, which would be tight. In this talk, we will prove the conjecture under the additional assumption that $|F| = o(n^{1/3})$ for all $F \in \mathcal{F}$, obtaining sharp bounds on the possible size of the $\theta$-intersecting family for certain values of $\theta$. We will also present some outstanding open problems in this direction. This is joint work with Niranjan Balachandran and Brahadeesh Sankarnarayanan.