Seminar

Some thoughts about monopole h-invariants

Higher algebraic structures in algebra, topology and geometry

24 February 14:15 - 16:00

Stefan Behrens - Bielefeld University

The monopole h-invariants are numerical invariants of closed, oriented 3-manifolds with the same rational homology as the 3-sphere. They were first defined by Froyshov in his work on Seiberg-Witten theory on 3-manifolds and shown to give restrictions on the possible intersection forms of bounding 4-manifolds. Nowadays, the h-invariants are commonly extracted from the monopole Floer homology package constructed by Kronheimer and Mrowka. It is a long standing question whether or not the h-invariants depend on the choice of coefficient ring. The goal of this talk is to discuss this problem using Manolescu's homotopy theoretic approach to 3d Seiberg-Witten theory, which recovers monopole Floer homology from an S^1-equivariant stable homotopy type. These Seiberg-Witten-Floer homotopy types are known to have a few special properties and the definition of h-invariants extends to abstract homotopy types with these properties. I will discuss examples of such homotopy types whose h-invariants exhibit non-trivial coefficient dependence. However, it remains an open question whether or not these homotopy types are realized by 3-manifolds.

 

Clik here to watch the seminar

Organizers
Gregory Arone
Stockholm University
Tilman Bauer
KTH Royal Institute of Technology
Alexander Berglund
Stockholm University
Søren Galatius
University of Copenhagen
Jesper Grodal,
University of Copenhagen
Thomas Kragh
Uppsala University

Program
Contact

Alexander Berglund

alexb@math.su.se

Søren Galatius

galatius@math.ku.dk

Thomas Kragh

thomas.kragh@math.uu.se

Other
information

For practical matters at the Institute, send an e-mail to administration@mittag-leffler.se