Speaker
Sören Bartels, University of Freiburg
Abstract
The plate bending or Babuska paradox refers to the failure of convergence when a linear bending problem with simple support boundary conditions is approximated using polygonal domain approximations. We provide an explanation based on a variational viewpoint and identify sufficient conditions that avoid the paradox and which show that boundary conditions have to be suitably modified. We show that the paradox also matters in nonlinear thin-sheet folding problems and devise approximations that correctly converge to the original problem. The results are relevant for the construction of curved folding devices.
Sören Bartels, University of Freiburg
Abstract
The plate bending or Babuska paradox refers to the failure of convergence when a linear bending problem with simple support boundary conditions is approximated using polygonal domain approximations. We provide an explanation based on a variational viewpoint and identify sufficient conditions that avoid the paradox and which show that boundary conditions have to be suitably modified. We show that the paradox also matters in nonlinear thin-sheet folding problems and devise approximations that correctly converge to the original problem. The results are relevant for the construction of curved folding devices.